Characterization of ADS-B Performance under GNSS Interference

TODD WALTER, ZIXI LIU, & SHERMAN LO

STANFORD UNIVERSITY AUGUST 2021

Stanford University

Objective

To examine ADS-B (Automatic Dependent Surveillance-Broadcast) behaviors during GNSS interference events and develop methods to use ADS-B for rapid GNSS interference detection and localization

Bottom line up front:

 ADS-B is a good tool for identifying interference, but there are several challenges to implementing it reliably

What is ADS-B

- Automatic Dependent Surveillance-Broadcast (ADS-B) is a technology where aircraft broadcast their estimated position
 - > Position and velocity messages output every 0.4 0.6 sec
 - No interrogation signal is required to initiate the broadcast
 - > Position is determined by satellite navigation
 - Nearby aircraft use these transmissions to obtain situational awareness of surrounding aircraft and maintain adequate separation
 - A network of ground and/or satellite receivers use messages to allow Air Traffic Control (ATC) to track aircraft location
 - ADS-B can supplement or replace radar tracking of aircraft location
 - ADS-B is more accurate than radar and has better coverage
- ADS-B is mandated in the U.S. and other parts of the world

Application to GNSS Interference Detection

- ADS-B was not designed to support interference detection
- ADS-B position is derived from GNSS
- Interference to GNSS at the aircraft will degrade the position accuracy and the associated confidence bounds
- Broadcast data demonstrating such degradations may be indicative of interference
- If multiple aircraft within a region exhibit such degradations, then RFI may be inferred as a potential cause
- Initially proposed and developed by EUROCONTROL in 2016
 Noticed a significant increase in reported GPS outage events

ADS-B and Automatic Identification System (AIS)

AIS has been used to identify interference events around the world

- > Spoofing in the Black Sea
- Circle spoofing in Shanghai, Iran,etc.
- ADS-B can provide similar information with better sampling of landmasses

GNSS RFI as detected by Airbus Aircraft, 2nd Sem 2020

https://www.eurocontrol.int/event/eurocontrol-stakeholder-forum-gnss

ADS-B Data

ADS-B messages include:

- > Airborne position (~2 Hz)
 - ICAO aircraft identifier & position
 - Navigation Integrity Category (NIC)
- > Airborne velocity (~2 Hz)
 - ICAO aircraft identifier & velocity
 - Navigation Accuracy Category velocity (NACv) estimated velocity uncertainty (95% accuracy)
- > Operational status (~0.4 Hz)
 - ICAO aircraft identifier
 - Navigation Accuracy Category position (NACp) estimated position uncertainty (95% accuracy)
 - Surveillance Integrity Level (SIL)
- Messages are neither encrypted nor authenticated

Navigation Integrity Category (NIC:)

The NIC is a number that represents the integrity bounding of the position measurements. It corresponds to a position containment radius (R_c)

Larger NIC values indicate better GNSS performance

NIC	Containment Radius	
0	Unknown	
1	$R_{\rm C} < 37.04 \rm km$	(20nm)
2	$R_{\rm C} < 14.816 \rm km$	(8nm)
3	$R_{\rm C} < 7.408 \rm km$	(4nm)
4	$R_{\rm C} < 3.704 \rm km$	(2nm)
5	$R_{C} < 1852 m$	(1nm)
6	$R_{\rm C} < 1111.2 {\rm m}$	(0.6nm)
	$R_{\rm C} < 926 {\rm m}$	(0.5nm)
	$R_{\rm C} < 555.6 {\rm m}$	(0.3nm)
7	$R_{\rm C} < 370.4 {\rm m}$	(0.2nm)
8	$R_{C} < 185.2 m$	(0.1nm)
9	$R_{\rm C} < 75 {\rm m}$	
10	$R_{\rm C}$ < 25 m	
11	$R_{\rm C} < 7.5 {\rm m}$	

Stanford University 10

Uncovering the Effects of RFI on ADS-B

- Report from a local pilot who had experienced GPS outages on two flights in early 2019
 - > Video available at <u>https://www.youtube.com/watch?v=slfm6orZlgc</u>
- We participated in a jamming exercise at Edwards Air Force Base in September 2019
 - Collected airborne GNSS data including times and locations of successful jamming
- Eastern Mediterranean region
 - > A well-known jamming location

Local Report of Interference

A local pilot experienced GPS outages twice at very similar points in the approach path to Hayward.

-122.14 -122.12 -122.1 -122.08 -122.06 -122.04 -122.02 -122 -121.98

Test Aircraft at Edwards AFB

Interference Sources NAVFEST 2019

40 to 90 dB of jamming

Compare radiated and anticipated interference power with measured power

Stanford University

GNSS positions during DT NAVFEST (9/17/2019)

- Annal

ADS-B Impact During DT NAVFEST (9/17/2019)

Stanford University 17

Interference Event without Mountains

Eastern Mediterranean (Cyprus Region)

Many flight paths affected

Experienced
 both position
 gaps and poor
 NIC values

Affected area is very large

Stanford University 19

Jamming Effects on ADS-B

- Although data gaps were frequently associated with RFI events, there are many other causes of gaps
 - > Gaps by themselves are not necessarily a good indicator of jamming
- The confidence parameters NACp, NACv, and NIC are better indicators of RFI
 - > NIC is nominally required to be 7 or above
 - > Values of 6 or below indicate possible degradation
 - > For strong RFI it will typically drop to 0
 - Moderate RFI can lead to intermediate values, but so can poor geometry (e.g., caused by aircraft banking)
- A low NIC value with an associated gap is a strong indicator

SVN 74 Anomaly – September 20, 2020

- Broadcasted non-standard data along with a large clock error
- Not all aircraft showed impact (a few dozen), but aircraft with NICs = 0 are spread over a wide area under SVN 74 footprint
- Some GNSS receivers affected by anomaly

Spoofing Detection

- ADS-B could also be very effective at detecting spoofing
- Radar coverage is still available in most areas
- ADS-B ground receivers are synchronized, the network could be expanded to use trilateration to estimate the aircraft latitude and longitude
 - > ADS-B reports most often use the barometric altimeter height
- Spoofing could be detected by comparing these independent position estimates against the broadcast positions

Summary

- U.S. airspace is sampled by > 45,000 flights every day
 - > > 200,000 globally
- These aircraft sample the GNSS RF environment and broadcast information that may be used to detect the presence of interference
- ADS-B was not designed for RFI detection, so care must be taken to properly distinguish RFI events from other issues
 - > Active proposals to include more direct information (e.g., C/N0)
- Work is being done by many different organization to parse this data and identify effective means of detection and localization
 - > Expect ADS-B to be increasingly used for RFI detection & localization

Localization Contour

Working on methods to determine the location of the jammer

Match observed
 performance against
 expected performance
 for a grid of possible
 jammer locations