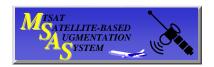


MSAS current status

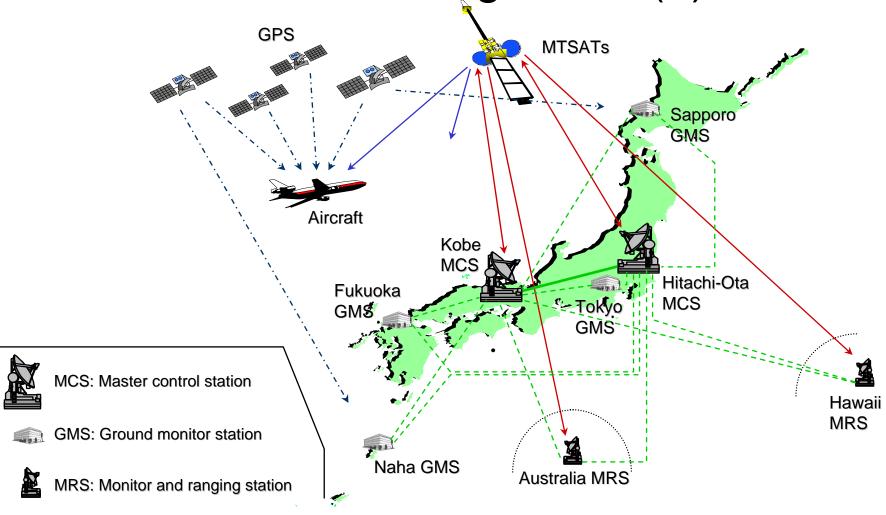
Japan Civil Aviation Bureau



Contents

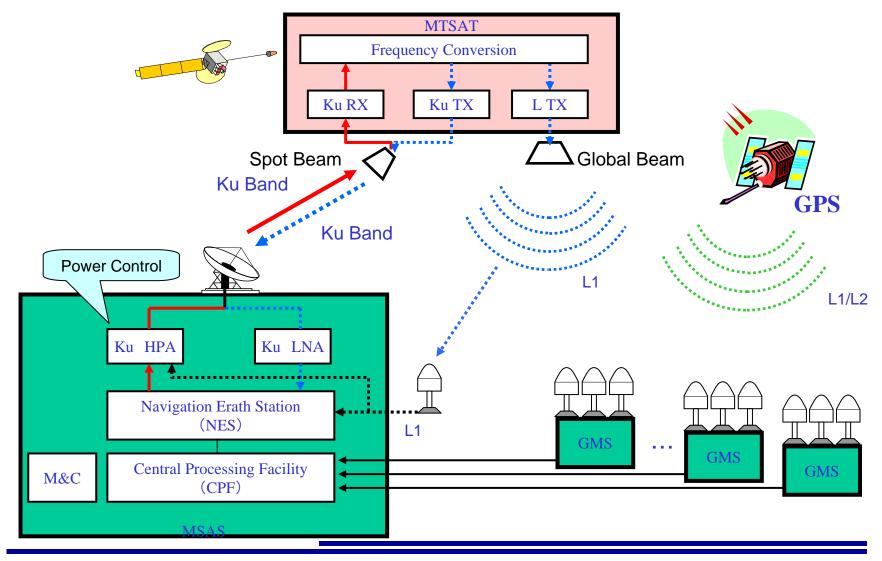
- Overview of MSAS
- MSAS Status
- Process for MSAS Commissioning
- Results of OT&E
- Current Activities on MSAS

Overview of MSAS

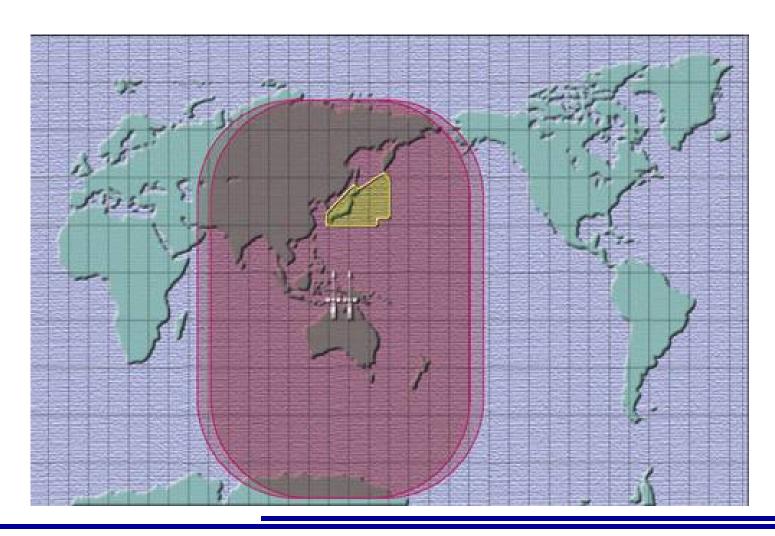

Overview of MSAS

<MSAS : MTSAT Satellite Based Augmentation System>

- Functions
 - Ranging
 - Provide an additional pseudo-range signal from a SBAS satellite
 - Satellite status
 - Determine and transmit the GNSS satellite health status
 - Basic differential correction
 - Provide GNSS satellite ephemeris and clock corrections (fast and long-term)
 - Precise differential correction
 - Determine and transmit ionospheric corrections
- Carrier frequency
 - 1575.42 MHz (L1)
- MSAS PRN Code
 - 129 and 137
- MSAS Test signal broadcasting as not-for-safety use
 - Since July, 2005
 - http://www.kasc.go.jp/MSAS/index.htm

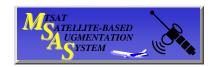


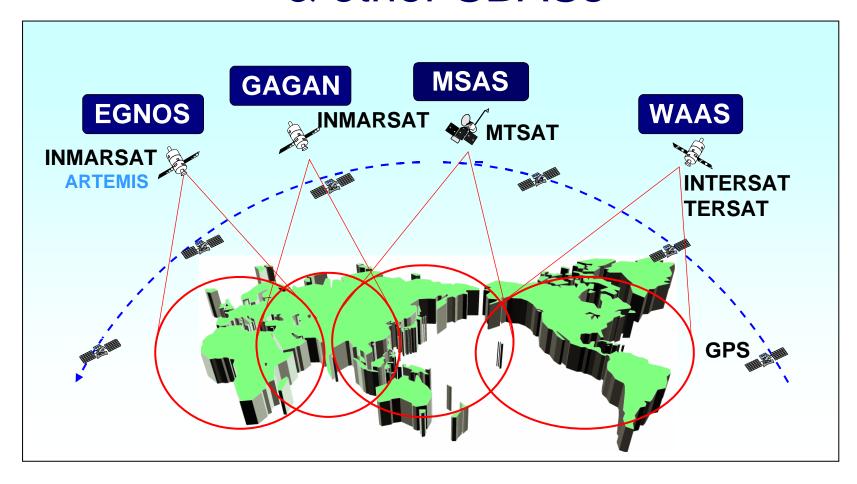
MSAS Configuration(1)



MSAS Configuration(2)

Service Area of MSAS




Satellite Missions

- Meteorological mission had commenced on June 2005.
- AMSS (Communication Service) had commenced on June 2006.

Service Area of MSAS & other SBASs

MSAS Status

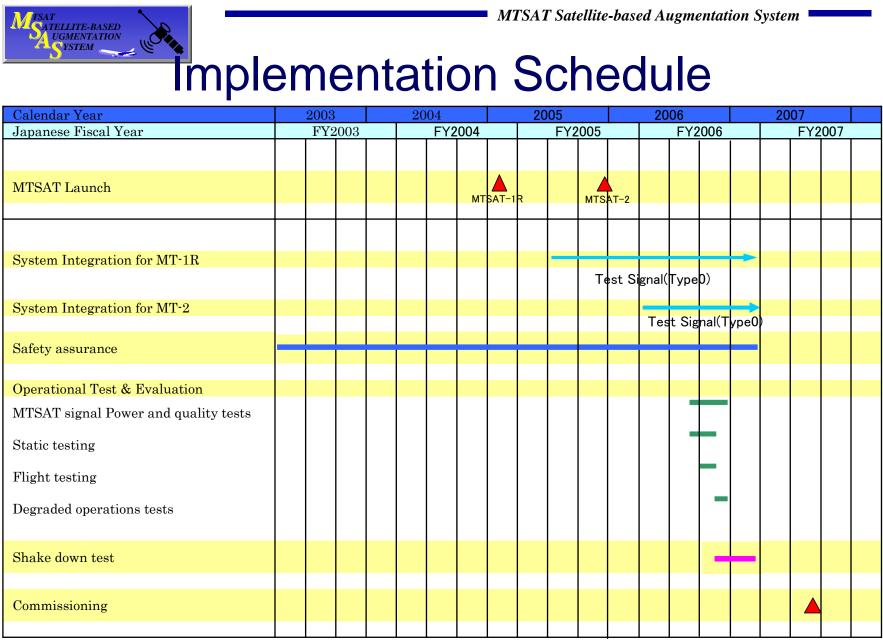
MTSAT History

- MTSAT-1R
 - Date
 - 26 February 2005
 - 18:25 (JST)
 - Launcher
 - H-IIA No.7

- MTSAT-2
 - Date
 - 18 February 2006
 - 15:27 (JST)
 - Launcher
 - H-IIA No.9

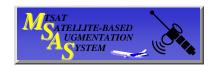
MSAS Status (1)

- MTSAT-1R was launched in 2005
 - Located at 140E
- Meteorological Mission by MTSAT-1R has been operated since 28 June, 2005
- MTSAT-2 was launched in February 2006
 - Located at 145E
- MSAS Total System Integration with Two MTSATs was Completed
- Operational Test & Evaluation was Completed



MSAS Status(2)

- MSAS Test Signal Transmission
 - Type-0 message from MTSATs is now available prior to commissioning
 - PRN 129 by Kobe and PRN 137 by Hitachi-ota
 - Transmission Schedule is available on Kobe Aeronautical Satellite Center Web Site


http://www.kasc.go.jp/MSAS/index_e.html

 MSAS Initial Operational Capability (IOC) with dual MTSAT coverage will be achieved in September 2007.

Process for MSAS Commissioning

Process for MSAS Commissioning(1)

- System Integration with Two MTSATs
- Safety Assurance
 - HMI (Hazardously Misleading Information) analysis for GEO portion
- Operational Test & Evaluation
 - MTSAT signal power and quality Test
 - Static Test
 - Flight Test
 - Degraded Operation Test

Process for MSAS Commissioning (2)

- Shake Down Test
 - Check Readiness to commence MSAS Operation
 - Confirm Documentation, Installation, Personnel Safety, Configuration, Periodic Maintenance,
 Collective Maintenance, Personnel Training,
 Logistics, Security
 - Check Operational Procedures and Operations
 - Confirm Operations based on Reference Values
- Commissioning
 - MSAS will commission with Two MTSATs

Results of OT&E

Static Test

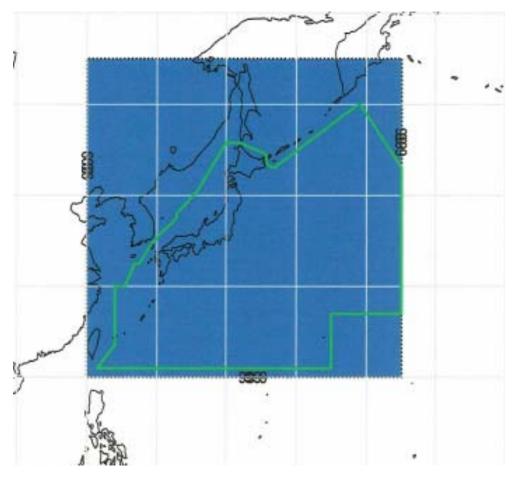
- -Typical operation and Performance requirement-
- Required performance by ICAO SARPs Annex10 Vol.1 (Standards And Recommended Practices)

Typical operation Performance requirement	NPA	APV-I	
Availability	0.99~0.99999	0.99~0.99999	
Accuracy horizontal 95%	220m	16m	
Accuracy vertical 95%	N/A	20m	
Horizontal alert limit	556m	40m	
Vertical alert limit	N/A	50m	

Static Test

-Accuracy(95%)-

(m)


	ER/NPA (Without MSAS) HPE	ER/NPA (Using MSAS) HPE	APV-I HPE	APV-I VPE
Sapporo	5.31	1.01	0.97	1.28
Tokyo	5.10	0.94	0.91	1.37
Fukuoka	5.60	0.96	0.83	1.26
Naha	7.66	2.27	-	-
Kobe	5.22	0.83	0.76	1.15
Hitachi-ota	4.97	0.79	0.75	1.19
Sendai	2.96	0.88	0.80	1.58

[2006/10/16~2006/11/14]

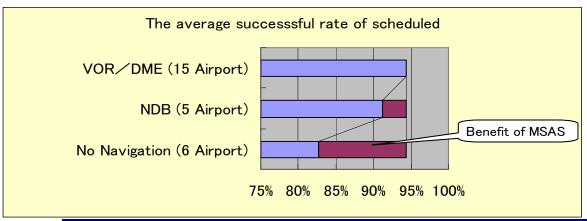
(note) Average of 95% accuracy over 30days

ER/NPA Service Availability

The dark blue color indicates that NPA availability is at least 99.99%.

Results of OT&E

- No major problems were found during TRT's review of OT&E test results
 - Performance was within expectations
- Results of OT&E Tests support a recommendation that MSAS be commissioned for ER/NPA operations as IOC



Current Activities on MSAS

Current Activities on MSAS (1)

- Development with remote island airport
 - For NPA
 - Navigation aids is not set up in many of remote island airport
 - The average successful rate of scheduled flight of these airports is significantly low
 - MSAS can increase average successful rate of scheduled flight

Current Activities on MSAS(2)

- Study on MSAS Evolution
 - For APV and LPV
 - New Algorism for Ionospheric Error Estimation is being developed
 - Simulation and Evaluation using Service Volume Model is continuing
 - Three Key Factors to make the Decision
 - Technical Feasibility
 - Cost Benefit
 - User Preference

Summary

- MSAS System Integration was Completed
- MSAS Operational Test & Evaluation was Completed
- MSAS Test Signal is being transmitted
- MSAS will be commissioned on 27 Sep. of 2007
- MSAS IOC will be from en-route to NPA.