

SiRF GNSS Technology Overview

Greg Turetzky Director of Marketing, New Product Technology and IP

ICG Meeting, Montreal July, 2008

Who is SiRF?

- SiRF was founded in 1995 with a vision to bring GPS to mainstream consumers
 - Market was still focused on professional applications at product and module level
 - Breakthrough performance in sensitivity and time to first fix with a REDUCTION in power and price
- Our products fueled the growth of key consumer markets for car navigation, PC accessories and cell phones
 - Today we are a market leader and our chips can be found in leading PND and cell phone products around the world
- The SiRFstarII chipset was the first to support WAAS and EGNOS for consumer products in 1998
- We were the first company to ship > 1M GPS chipsets in a single month

(2)

Key specifications

	SiRFstarl	SiRFstarIII
year introduced	1997	2008
BB Technology	350nm CMOS	90nm CMOS
CPU/Memory	3 chips external	Internal
RF Technology	BiCMOS	Internal
Power (1Hz fix)	< 1W	<50mW
Total BOM	< \$100	< \$15
Chipset portion	>50%	<40%
Total Footprint	< 7500 mm2	< 20 mm2
Sensitivity	-142 dBm	-159 dBm
TTFF (hot)	12 seconds	<1 second

Current SSIII chip on an evaluation board

Future of GNSS for consumer

- Two distinct markets have different characteristics
- Automotive Navigation, Telematics and PND systems
 - GPS penetration is 100%
 - It is the primary radio in the device
 - Many consumer products no longer advertise GPS specifications
 - Many leading brands don't support WAAS or EGNOS
 - Focus is on screen size, map support, even music
 - Manufacturers still have certain requirements
 - Accuracy in high multipath, downtown environments
 - Fast TTFF in autonomous operation
- Cellular and other wireless devices
 - GPS penetration is relatively low (<25%)
 - Product specification is focused on applications
 - Coexistence with other radios is paramount
 - Cost, size and power dictate penetration
 - Performance under aided (AGPS) conditions is focused on availability, not very high accuracy
- KEY NOTE: Neither market considers GNSS a "must have"

5

GNSS Spectrum chart circa 2006

- SiRF used this chart to support our single frequency preference for L1
- Potential future support for 3 systems at L5

Since then GPS improved significantly

- Satellite constellation now at 31 active vehicles
 - Improvement in TTFF and availability across the board
 - Next ground segment upgrade to support 64 SVs
- Significant navigation improvements
 - 95% Spec is 13m, actual performance is 3-4m
 - Done under the AII initiative
- Satellite upgrades on track
 - Block IIR-M vehicles on orbit and verified
 - L2C interesting but no market impact and not in products
 - First block IIF to go up this year
 - Begin L5 capability to assess market potential
 - Block III contract awarded
 - Sustainment of constellation and L1C interoprability
- Market perception of GPS is rock solid and continuing to improve with no impact on cost!

 $\overline{7}$

Along comes Galileo

- Changes in management and schedule have created significant uncertainty
 - Few customers are willing to plan for capability
 - Most will require it once its proven
- Technical benefits are limited to consumers
 - More satellites is better, but only marginally now
 - Codes will provide better accuracy but at cost
 - Memory codes require chip area and potentially licensing?
- SiRF is a Galileo believer
 - Support Galileo hardware at L1 on our SiRFPrima chips today
 - Timeframe for operational support however is dependent on implementation
 - Management and control issues also need to be resolved

(8)

GPS & Galileo at L1

Galileo – Technical Impact at SiRF

- Major change in L1 signal structure for Baseband
 - Code is BOC(1,1) with ~4000 length memory code
 - Impact is extra gates for decimator and codes
 - Different message structure
 - New software for acquisition, tracking loops and navigation
 - These change are all acceptable cost/performance tradeoffs at modern (65nm) geometries
 - Licensing fees would be main open issue
- RF impact on bandwidth potentially more problematic
 - SiRF supports both 6 and 2 MHz bandwidth
 - Many customers prefer 2MHz for improved performance in unintentional interference from other internal sources
 - Transmitters, clocks, memory buses, display drivers, etc.
 - Wider bandwidth (6MHz) needed for full performance
 - Requires development of DSP mitigation methods
 - Some customer may choose narrow single sidelobe over full bandwidth depending on interference

GLONASS Comes back

- Constellation "replenishment" moving to schedule
 - New revision satellites (Glonass-M) have much better performance and on-oribt life than previous ones
- GLONASS gaining market traction
 - Some customers requesting for it, starting to appear in standards
 - Internal Russian market growing
- Significant silicon integration issues on current signals
 - Wide bandwidth and different center frequency at L1
 - Requires two front end paths
 - FDMA methodology and new tracking loops needed
- Longer term future is more code compatible
 - Next generation (Glonass-K) will have CDMA at L1 & L5
 - Similar issues to Galileo baseband
- Main concern is RF due to signal bandwidth
 - 8MHz at L1 is problematic
 - Too many harmonics will fall in band and noise floor will rise
 - 20MHz at L5 would require major redesign

(1)

Current 3 system proposal

(12)

Other Systems

- Augmentation Systems
 - WAAS system on new birds has positive impact in North America
 - MSAS, EGNOS and Gagan (India) augmentations have similar benefit
 - Japanese QZSS would be most beneficial
- Chinese COMPASS system is evolving in a positive way
 - Proposed MEO constellation is high complimentary
 - Frequency plan looks reasonable for implementation
 - Looking forward to ICDs and business proposals

SiRF Plans

- Support all commercially beneficial GNSS systems
 - All consumer devices likely to remain single frequency (L1) for some time
 - Dual frequency impact on BOM cost and size may not justify consumer benefit
 - Keep front end as narrow bandwidth as possible
- Continue influencing government strategy
 - Working with USGIC and GSA today on ICD issues
 - Pushing for License free access to signals from space
 - IPR development on implementation, not signals
 - Start GLONASS discussions internally and externally
- Technical and market focus in around BANDWIDTH
 - Current GPS customers driving for 2MHz bandwidth to minimize interference
 - All new signals require minimum of 6 MHz bandwidth
 - Looking at DSP methods to use 6 MHz bandwidth and eliminate interference issues
- GNSS based location faces other competition
 - Hybrid radio methods using DTV, cellular, WiFi and many other SoP
 - Sensor integration due to advances in MEMS accelerometers and gyros
- SiRF is now a LOCATION company, no just a GPS or even GNSS company
 - Consumers drive for ubiquitous availability is the key measure

