Looking Ahead for GPtS ---

Bradford Parkinson

Emeritus Professor Stanford University Department of Aeronautics and Astronautics

Today, GPS Serves over 300 <u>Million</u> Users (from the FAA & C. Moon, AMTI)

GPS Applications have Proliferated

- Civil
 - Transportation
 - Aviation
 - Automobile
 - Maritime
 - Rail Control
 - Public Services
 - Timing & Frequency
 - Surveying
 - Surveillance
 - Other
- Military

© Bradford W. Parkinson

A Fundamental Change in Warfare

CAOC directs aircraft

Operation ANACONDA, March 2002

al-Qaeda Target Destroyed

What's Next?

PNT to Explode with Opportunities

The Five Design Keys (& Barriers to Entry)

- 1. The CDMA signal (PRN or Spread spectrum)
- 2. Van-Allen qualified atomic clocks
- 3. Orbit prediction to a few meters (URE) in 100,000 km of travel
- 4. Spacecraft that lasted about ten years (cost of ownership)

5. User Equipment that could (eventually) be miniaturized (<\$)

New Signals are On the Way

ICG3 Talk © Bradford W. Parkinson

Coming: a Plethora of Signals

ICG3 Talk © Bradford W. Parkinson

New Systems: Can't we just get along?

- Degrees of "Getting Along"
 - Compatible
 - Lets not hurt each other
 - -Interoperable
 - I'll try yours, you can try mine
 - -Interchangeable
 - Any four will do

So what are the major new (or expanded) applications going to be?

"Predicting the future is easy. It's trying to figure out what's going on now that's hard." -Fritz R. S. Dressler

- Expanded Crustal Tracking
- Precision Tracking and Reporting (Air Traffic ADS-B)
- Cell/GPS explosion where will this go?

Robotic or "*Assisted*" *Control* already a Major Application of GPS

New Systems: Robotic Use Of GPS at Stanford

Autonomous Model Helicopter

GPS Position, Velocity and Attitude

A Future <u>System</u>: Auto-guided Automobiles and Freeway Automatic Traffic Control

- Use all International **Position Signals**
- Vector Kinematic **Receivers** (10 cm or better)
- MEMS/IMU/CSAC
- Radars
- Cooperative Tracking of other vehicles

A Caution: Three Critical Issues for GPtS

GPS Enormous Capability

Worldwide Dependency

What must we do to <u>insure</u> that the Trust in GPtS is not misplaced?

The Three Issues

- Sustainment
- Robustness
- Interchangeability

GPtS Issue #1 - (<mark>Sustainment</mark>) *Constellation <u>Availability</u>*

- Average GPS on-orbit life 8.9 years
- First IIF currently available for launch: January 2009
- First GPS III currently available for Operations - April 2014
- When will Galileo be "certifiable"?

It is imperative the we avoid "GPtS Brownouts"

Needed: Sustained, high-level support for earlier GPS III delivery and availability

GPS Issue #2 -GPS Robustness (Deterrence)

- Constellation size of 30+X for users in impaired environments (the GDOP imperative) Need: Full, urgent <u>Commitment</u> by US
- Affordable GPS Receiver Interference Rejection Technology (inertial integration and digital beam steering technology)

Needs full development

• GPS Backup - eLoran?

Needs decisions/funding

GPS Issue #3 -GPS and Galileo-True, Total *Interoperability*

<u>Real Measure: Interchangeability</u> "Mix and

Match" with the <u>same</u> ranging accuracy

- L1C defined, implemented, and operable including all details
- Seamless WAAS/EGNOS/+?
- True clock Synchronization (Common Clock) and common grid
- <u>Payoff</u> Availability, Accuracy and

Robustness for *Worldwide Users*

The Burden for the GPtS Community

Thanks for your Attention -

Questions?

Backups

Illustrating why current number of Satellites is <u>Minimal</u> (Courtesy GPS

- World and John Lavrakas)
- Accuracy is strongly driven by Masking Angle and number of satellites (the impaired user's problem)
- Above 10°, less than 30 satellites destroys accuracy and availability

ICG3 Talk © Bradford W. Parkinson

THE "Big Five" Civil Goals for GPS

- 1. <u>Assured Availability</u> of GPS signals-Including impaired situations (mountains, urban areas, foliage, etc.)
 - Number of GPS Satellites/Geometry
 - Interoperability and Standardization with Galileo et al
- 2. <u>Resistance to Interference</u> (RFI)
 - Additional Satellite RF power and Frequency Diversity
 - More jam resistant GPS receivers
- 3. <u>Accuracy</u>
 - Require Prediction Accuracy (Satellite Clocks and Age of Update)
 - Improved Satellite Geometry is essential
 - Augmentations: WAAS LAAS FGNOS MSAS NDGPS PLS
- 4. Bounded

 Conce
 Conce
 Good

 5. Integrity

 WAA
 RAIM

 Three of top four Goals

 Three of stop four Goals
 Are driven by the number of satellites –

 hence DSB & IRT
 30+X satellite recommendation

The Five Biggest Development Challenges for GPS

- 1. Selection and detailed design of the GPS CDMA (codedivision, multiple-access) signal
- 2. Developing and verifying space-hardened (upper Van- Allen belt qualified) atomic clocks
- Developing techniques for orbit prediction to a few meters (URE) in 20,000 miles of travel (this includes prediction of the clock behavior)
- 4. Designing and building spacecraft that lasted about ten years (cost of ownership issue)
- 5. Designing and demonstrating user equipment that could eventually be miniaturized and produced at low cost.