Introduction

- GPS is an important component of today’s aviation navigation infrastructure
 - Its role will continue to increase over the coming years
- Future GNSS constellations will also become important to contributors
- However, their incorporation must be done with great care as the integrity requirements for aircraft guidance are very stringent
 - Less than 10^{-7} probability of misleading information
 - International standards define different types of GNSS augmentations to achieve this level of integrity
Integrity Monitoring

• Space-based and ground-based augmentation systems provide independent monitoring of the GPS signals through calibrated ground monitors
 – Requires ground monitoring network communication channel to aircraft

• Receiver Autonomous Integrity Monitoring (RAIM) compares redundant satellite measurements against each other to determine identify and eliminate large faults
 – Requires a larger number of ranging measurements
• Key Feature:
 – Integrity Determination by the User with RAIM
• Key Enabler
 – Requires Redundant Ranging Sources
• Key Benefit
 – Provides horizontal guidance for aircraft
• Key Challenge
 – Accuracy & Availability
• GNSS vertical accuracy is worse than horizontal
• Aviation requirements are more strict in the vertical
 – Vertical maneuvers bring the aircraft closer to the ground
• Therefore, it is much harder for GNSS to meet aviation vertical guidance requirements
• But, absolute vertical guidance from GNSS offers a strong safety benefit
 – Enables smooth, continuous precision approach paths
• Want to provide vertical and horizontal guidance
Two Civil Frequencies

- The ionosphere creates the largest source of uncertainty affecting today’s use of GPS for aviation
- When GPS L5 becomes widely available it will become possible to directly remove the ionospheric influence
 - May allow RAIM to support vertical navigation
- Unfortunately, the two frequency combination increases the effects of other noise sources
- It is desirable to reduce these noise terms and/or add more satellites to offset this increase
Future Considerations

Galileo (EU)

COMPASS

GLONASS

GPS
Interoperability of Integrity

• Interoperability should be a goal not just for GNSS signals, but for integrity provision as well
 – Augmentation systems already internationally coordinated

• Open service signals should target performance comparable to or better than GPS L1 signals today

• Different providers may make different design choices and different assurances
 – However, it is important to establish a common understanding of how RAIM depends on GNSS performance and how signals from different services could be combined to improve RAIM
 – Cooperation and transparency are essential
Benefits of Multi-Constellation RAIM

- Combining signals from multiple constellations can provide significantly greater availability and higher performance levels than can be achieved individually.

- Potential to provide a safety of life service without requiring the GNSS service provider to certify each system to 10^{-7} integrity levels.

- Creates a truly international solution:
 - All service providers contribute
 - Not necessarily dependent on any single entity
 - Coverage is global and seamless
Requirements on New Signals and Constellations

- Assure good nominal signal accuracy
 - On order 1 m ranging accuracy
- Perform a fault modes and effects analysis
 - Understand and make transparent potential faults and their effects
- Assure low fault rates
 - Of order 10^{-5}/SV/Hour
- Assure good continuity of signals
 - Less than 10^{-5}/hour probability of unexpected outages
- Assure good availability of signals
Summary

• RAIM allows for worldwide aviation navigation without requiring additional ground infrastructure

• Additional GNSS constellations can significantly improve performance and availability

• New GNSS constellations should assure that their open service signals support RAIM

• International cooperation and coordination will be essential to achieving this goal