GNSS Aviation Applications

UN/China/ESA Training on the Use and Application of GNSS
Beijing China
December 4-8, 2006

Alice Wong
Senior Advisor
US State Department
Aviation Navigation Evolution

• Components Of GNSS:
 – Satellite Position, Velocity, and Time Constellation(s)
 • Global Positioning Systems (GPS), U.S. - Operational
 • GLONASS, Russian Federation - Not Operationally Usable
 • Galileo, European Union - Not Operational
 – Augmentation Systems
 • Aircraft Based Augmentation Systems (ABAS)
 • Satellite Based Augmentation Systems (SBAS)
 • Ground Based Augmentation Systems (GBAS)
 • GNSS Regional Augmentation Systems (GRAS)
GNSS

• Using GPS Today, Immediate Implementation Of GNSS In Aviation Is Possible
 – Performance Based Operations: Utilizing All GNSS Capabilities Of The Aircraft To The Fullest Extent Possible
 – Area Navigation (RNAV): Flying Efficient Direct Routings
 – Instrument Approaches To All Runway Ends Without The Need For Most the Ground Navigation Equipment
 • Non-precision Only. No Vertical Guidance
 • High End Aircraft Can Provide Vertical Guidance Through Aircraft Based Barometric-Vertical Navigation (VNAV)
 – GNSS Based Required Navigation Performance (RNP)
 • Precise Navigation Capability
 • Permits Efficient Operations In Terrain Constrained Or Congested Airspace
GNSS In United States

• U.S. Has Approved Use of GPS For Aircraft Navigation For Over A Decade
• FAA GNSS Activities
 – Participates In Management Of GPS To Insure Aviation Requirements Are Sustained
 – Working With Other U.S. Federal Government Agencies To Insure Modernization of GPS Improves Aviation Capabilities
 – Implementing RNP
 – Commissioned the FAA’s GNSS SBAS
 • Wide Area Augmentation System (WAAS)
 – Continuing Development Of the GNSS GBAS
 • Local Area Augmentation System (LAAS)
 – Committed To Performance Based National Airspace System
Moving To a Performance Based NAS

• FAA’s Goal Is To Design An Integrated, Performance Based National Airspace System That Can Meet The Needs Of Tomorrow And Satisfy ICAO’s Vision Of A Safe, Secure, And Seamless International Air Transportation System
What Is “Performance-Based” Navigation?

• An End-to-End Air Transportation System Based On Performance Standards Rather Than Specific Technologies Or Equipment
 – Area Navigation (RNAV)
 – Required Navigation Performance (RNP)

• Recognizes The Ability Of Modern Aircraft To Operate Safely And Efficiently Using A Variety Of On-Board Systems and External Signals
FAA Roadmap for Performance-Based Navigation

- Divided into three planning periods
 - Near-term 2003 to 2006
 - Implementation of public RNAV and RNP procedures in all phases of flight
 - Development of enabling criteria and guidance for more advanced RNAV and RNP operations
 - Mid-term 2007 to 2012
 - RNAV becomes the predominant means of navigation in the NAS
 - Removal of some ground-based navaids as a result of increasing number of RNP procedures
 - Advanced navigation capability enables improvements in airspace design based on applicable route spacing, separation minima, new sectors and terminal airspace structures
 - Far-term 2013 to 2020
 - Application of RNP becomes mandatory in some airspace
 - Significant capacity and efficiency gains through airspace restructuring
 - Minimal operational network of ground-based navaids used as a backup
FAA Satellite Navigation Programs

• Stand-alone Global Positioning System (GPS) with Certified Avionics

• Augmented GPS
 – FAA’s Wide Area Augmentation System (WAAS)
 – FAA’s Local Area Augmentation System (LAAS)
Automatic Dependent Surveillance (ADS-B)

- **Safety Benefits**
 - Improved situational awareness both in the aircraft and ATC
 - Reduced runway incursions through the use of surface surveillance and navigation
 - Search and rescue
 - New services in non-radar airspace enabling access to airports

- **Operational Efficiency/Capacity Benefits**
 - Higher air traffic throughput due to reduced separation
 - Optimized flight levels and routes
 - More efficient airline dispatch and control
Int’l Cooperation… A Necessity

- U.S. Assigned Airspace Equals 77 million Square Kilometers
GPS Aviation Ops Approvals

42 Nations; many others pending
International SBAS Coverage

GAGAN MSAS WAAS EGNOS
Backup Slides

Additional GNSS-Based Applications
GNSS Location Based Services

- **Cargo Fleet Tracking**
 - Improves safety and security
- **Fleet Control/Dispatch**
 - Fuel savings
 - Improves asset management
- **Emergency Operations**
 - Reduces response times
 - Reduces injury & property loss
- **Road Maintenance**
- **In Vehicle Navigation**
 - Accurate position determination
 - Reduces air pollution
GNSS Positive Train Control

- Situational Awareness
- Enhances safety
 - Reduces accidents
- Increases capacity and efficiency
 - Closer train spacing reduces investments
 - Reduces fuel consumption
- Rapid rail structure and condition mapping
 - Improves maintenance capability
GNSS Maritime Applications

• Large ships, fishing & recreation boats
• Harbor entrance and approach
 – Regardless of visibility
• Hydrographic Survey
• Buoy Positioning, etc.
GNSS Recreation Applications

• Explore anywhere in the world
 – Without getting lost or eaten!
• Your favorite fishing spot
 – Every time
• Try Geocaching
 – GPS treasure hunting