Remote sensing based methods for the inventory of woody biomass

Mathias Schardt
Roland Wack

JOANNEUM RESEARCH
UNOSAT
SEPT 2006
Remote sensing based methods for the inventory of woody biomass

WHAT?

WHY?

HOW?
WHAT?

WOODY BIOMASS

„….is the trees and woody plants, including limbs, tops, needles, leaves, and other woody parts, grown in a forest, woodland, or rangeland environment“
(USDA Forest Service)

woody biomass * x = Carbon
WHY?

WOODY BIOMASS

- carbon stock

 Kyoto Protocol – carbon balance reporting
 - natural carbon cycle: 60 G tC/a
 - possible absorption: ~ 1.5 G tC/a
 - current disruption: ~ 6.3 G tC/a

- Energy

 • Balance trade deficits
 • Bolster rural economics
 Austria: GDP 221 Bil €/a
 Energy 25 Bil €/a (11%)
HOW?

How much woody biomass to we have?

Statistics

-> National forest inventory data
-> biomass expansion factors (bef)

Austria: ~ 11,000 plots
revisit: 10 years
costs: ~ 10 M€

Austrian C balance 1990

320 +/- 43 Mt C (biomass)
463 +/- 185 Mt C (soil)
(UBA)
HOW?

Problems

-> spatial distribution ?
-> no NFI data available ?
-> costs
-> time

⇒ REMOTE SENSING!
HOW?

Remote sensing based methods for the inventory of woody biomass

Data sources

-> active sensors (RADAR, LIDAR), passive sensors (cameras)
 -> airborne, spaceborne
 -> scale

direct – indirect methods
Direct methods for the estimation of woody biomass

The signal characteristics are directly correlated with the woody biomass of the forest

- visible to midinfrared wavelength satellite imagery
- SAR - L band backscattering amplitude
Direct methods for the estimation of woody biomass

Example: visible to midinfrared wavelength satellite imagery (Eu-project CarboEurope)

- sample plots (e.g. NFI + BEF)
- classification / knn Method
- Satellite imagery (medium to low resolution)
Landsat ETM – Satellite Imagery
National Forest Inventory – Plots: Yellow Circle

Forest – Non-Forest Classification - Result
Institute of Digital Image Processing - Remote Sensing

Forest biomass estimate
Pixel - Level

Forest biomass estimate
Eurogrid 5km by 5 km Raster

0 5 10 km

34600 t 30700 t
53400 t 43600 t
Estimation of above ground woody biomass and tree carbon stock within 10km by 10km to 50km to 50km Euro-Grid

Current work: Extrapolation with MODIS satellite data – covering Europe. (EU-project CarboInvent)
Direct methods for the estimation of woody biomass

Example: SAR - L band backscattering amplitude

- sample plots (e.g. NFI + BEF)
- classification / knn Method
- SAR L Band data
 - spaceborne: e.g. Jers
 - airborne: e.g. (E-SAR)
Direct methods for the estimation of woody biomass

Example: SAR - L band backscattering amplitude
different wavelengths – different penetration
Application

SIBERIA II - Project

Schmullius (2004)
Indirect methods for the estimation of woody biomass

The biomass is estimated based on forest heights (allometry)

height = Digital surface model(DSM) - Digital terrain model(DTM)

- InSAR (x - band / P – band) or Pol InSAR (e.g. L-band)
- stereo satellite imagery
- airborne LIDAR
Direct methods for the estimation of woody biomass
InSar with X-band / P-band
Example - project MountainNet
test site Kobernausser forest

Gutjahr 2006
Allometry: height to biomass

\[\text{Biomass} = 1.66 \cdot \text{height}^{1.57} \]

Variability

- ~15% site conditions
- ~20% between climax species, not poplar/birch
- unlimited reduction due to thinning/management concept
InSar with X - band / P – band

Allometry: Pol-InSAR to biomass

Performance of height-biomass allometry from the ground measurements

Biomass estimation from Pol-InSAR heights and an assumed height-biomass allometry

Mette 2006
Direct methods for the estimation of woody biomass

Example: stereo satellite imagery
EU project Fireguard

- high resolution stereo satellite imagery
 (Quickbird, Ikonos, SPOT V)

- generation of a DSM
- DTM via filtering
Vegetation height mapping

Surface model

Quickbird fused

Land use

Ground model

Forest mask

Forest heights
Biomass Estimation

- pansharpened
- DSM
- classification
- vegetation (stereo)
- segmentation
- biomass
Direct methods for the estimation of woody biomass

Example: standwise small footprint LIDAR data 'waveforms'

- airborne sensor
- laser pulses – 1pt/m²
- 3d point clouds
Vertikalstruktur von Forstbeständen LS data

Höhe [cm]

Laserhits
Direct methods for the estimation of woody biomass

Example: standwise small footprint LIDAR data 'waveforms'
results of a linear regression analyses based on sample plots

<table>
<thead>
<tr>
<th></th>
<th>all plots (43) [r² / rmse%]</th>
<th>coniferous only (33) [r² / rmse%]</th>
<th>over 50% deciduous (9) [r² / rmse%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>timber vol./ha</td>
<td>0,88 / 24 %</td>
<td>0,97 / 16 %</td>
<td>0,99 / 5 %</td>
</tr>
<tr>
<td>tree number/ha</td>
<td>0,93 / 21 %</td>
<td>0,96 / 15 %</td>
<td>0,93 / 30 %</td>
</tr>
<tr>
<td>basal area/ha</td>
<td>0,93 / 15 %</td>
<td>0,96 / 13 %</td>
<td>0,98 / 4 %</td>
</tr>
<tr>
<td>biomass/ha</td>
<td>0,96 / 14%</td>
<td>0,96 / 14%</td>
<td>0,99 / 4 %</td>
</tr>
</tbody>
</table>
SUMMARY

- direct methods
 SAR (C and L - band) boreal forests
 satellite imagery

- indirect methods
 InSAR no spaceborne P band sensors
 stereo data
 LIDAR

scale
 single tree to Euro Grid 50 km
 coverage: regional to continent
Remote sensing based methods for the inventory of woody biomass

Mathias Schardt
Roland Wack

JOANNEUM RESEARCH
UNOSAT
SEPT 2006