Assessment of Cut-and-Burn farming system on the management of Songwe River: a trans-boundary watershed between Tanzania, Zambia and Malawi.

James B. Chimphamba, S. Mwakalila, and J. Kanyanga
Presentation Content

• Key environmental issues
• Instability of the Songwe River Catchment
• Knowledge Gap
• Cultural Homogeneity
• Government Strategy
• Methodology
• Results
• Way forward
• Assessment of Drivers
• Summary
Key Environmental Issues

• Songwe River is a trans-boundary River between Tanzania, Zambia and Malawi
• Main source of fish protein and household incomes for about 1.3 million rural people in Tanzania and Malawi
• This ecosystem service is under threats by heavy sediment load to Lake Malawi estimated at 5000-7000t/year - the highest of all river systems of the lake
Instability of Songwe River Catchment

- Experience frequent Flooding leading to destruction of human and animal life, and property
- Magnitude and frequency of flooding has increased over past 10-20 years
- Changes courses and creates problem of national identity: Tanzanians or Malawians
- Cause of these environmental problem linked to cut-and-burn farming systems in the upper catchments areas of the river
Knowledge gap

- Number of hectarage of cut-and-burn per year and for each of the three territories is not known
- Associated soil and landscape features that promotes cut-and-burn also not well understood
- Policy environment and social economic drivers not well understood
Cultural Homogeneity

- The Nyika people living in bordering areas of the three territories are the principal tribe that practices the cut-and-burn farming.
- Observations indicate that there is more cut-and-burn in Zambia and Malawi than in Tanzania.
- No available quantitative data to support such assertions.
- Effectiveness of environmental management policy assumed to be the main cause of differences in the magnitude of cut-and-burn farming between these territories.
Government Strategy

- The governments of Tanzania, Zambia, and Malawi recognize the problem.
- Government of Malawi and Tanzania has sought support from Norway for Songwe River training project.
- Project recommended river training to stabilize course and dams to absorb flooding.
- River training option has been abandoned because it could destroy fish breeding grounds.
- Both governments agreed for further studies.
Methodology

- Global Positioning System could be used to locate the training sites
- Land cover described by PRA and Tree age indices White (1971)
- Supervised classification based on maximum likelihood & NDVI
- Applied on land sat7 imagery using ILWIS
- Matching of the land sat 7 cover map with:
 - Shaxson’s Vegetation Classification map
 - Biotic Community Map of Malawi
Results

- Large areas under Motane Evergreen Forest had disappeared in areas with intensive Cut-and-burn
- Open canopy woodland of plateau substantially been reduced
- Area under Motane grassland increased
- Built-up areas had also substantially increased
Way Forward

• Carry out a comprehensive study to characterize cut-and-burn farming
• Produce chronological sequence of hectarage under cut-and-burn farming for past 10-20 years
• Subject this past annual hectarage of cut-and-burn to multivariate correlation analysis with respect to annual rainfall, sediment load and incidence of flooding
Assessment of Drivers of Cut-and-burn Farming

- Quantify the intensity of cut and-burn in each of the three territories: Tanzania, Zambia and Malawi
- Express annual hectare of cut-and-burn per km² for each of the territories
- Analysis of Variance (ANOVA) will be used to determine whether the differences in rate of cut-and-burn between the territories is significantly different
- Determine the drivers of Cut-and-burn farming
Summary

• Review the environmental management policies/strategies of the three territories
• Assessment of the household per capita income of the three territories
• Determine hectarage of cut-and-burn under: different soil type, land slope, and moisture regime
• Assessment association of cut-and-burn farming with soil type, land slope, moisture regime using ANOVA
Thank you for your attention