INTRODUCTION TO GNSS NETWORK RTK

BAKU (AZERBAIDJAN) 12 Mai 2009

Ezzedine Djerbi Leica Geo-Systems Switzerland

- when it has to be **right**

1

- GPS & GLONASS constellations have never been designed to serve the civilian applications so far. They have been designed first for defense applications.
- However and thanks to the outstanding efforts and fair competition between research centers and universities, GPS has been turned to generate much more profit from and for civilian applications.
- The key was to process the GPS signals in such a way that the users can benefit of the same accuracy that they get from classical surveying instruments, first in post-processing and nowadays even in real time.

GPS & GLONASS is the key for precise positioning « Differential »

Existing and future GNSS Based Surveying

NAVSTAR GPS

USA, military system, developed in the 70s

GLONASS

Russian equivalent to GPS, developed in the 80s

GALILEO

Europe's GNSS, civil system, under development

Compass

China's global navigation satellite system, under development

Future GNSS systems GNSS-based surveying ...

.. today and in 2017

2009

- 31 GPS and 18 GLONASS SV
- 2 frequencies (L1, L2)
- 26 observation per epoch on average in open sky
- 12 observations per epoch on average with obstructions
- RTK up to 50km
- 8" typical initialization time
- RTK accuracy ±15mm

2015

- 32 GPS, 24 GLONASS, 30 Galileo SV (+ Comp.)
- 3 frequencies (L1, L2, L5)
- >80 observation per epoch on average in open sky
- 32 observations per epoch on average with obstructions
- RTK up to 80km
- 1" typical initialization time
- RTK accuracy ±10mm

REFERENCE STATION SOLUTIONS

TEMPORARY TO PERMANENT REFERENCE STATION

Temporary GNSS Base Station

Permanent GNSS Reference Station

From Temporary ... to Permanent Reference Station ... Single Base

1.

Ż

What is a C.O.R.S <u>Continuously Operating</u> <u>Reference Station ?</u>

A continuously operating GNSS reference station comprises a GNSS receiver and antenna set up in a stable manner at a safe location with a reliable power supply.

The receiver operates continuously,

logging raw data, perhaps also streaming (continuously outputting) raw data, and often outputting RTCM and DGPS data for transmission to RTK, GIS and GNSS navigation devices.

The receiver is usually controlled by a computer that can be located remotely if necessary. The PC will usually download data files at regular intervals and pass them to a web site for access by the GNSS user community.

Component off GNSS Single Reference Station

Installation: Open Sky - All in View Satellites

N.

GNSS Choke Ring Antenna

Meteo Station for Weather forecasting

Stable Monumentation anchors in bed rock

Fence and Secured access

Lightning Protection

Tape targets for TPS monitoring

GNSS receiver, power supply, communication equipment, air conditioning, anti bug..

FIRST C.O.R.S IN ULAANBATAR MONGOLIA

Conventional Single

G.N.S.S REFERENCE STATION

RTK

RTK Single Base Station

lt's a

- Temporary installation on a tripod or Permanent station
- Reference, for GPS
 operations in a small area (up to 30km) over a limited time

Accuracy, Reliability, Availability

Good Poor

Leica Geosystems

GNSS Single RTK

Real time coverage Limitations of single GNSS Reference station RTK

Accuracy, Reliability, Availability Good Poor

- No continuity in quality of service (accuracy, reliability, availability)
- High density of stations required for good coverage
- Higher cost
- Multiple reference stations delivering RTK directly to users is not really a network

Single G.N.S.S REFERENCE STATION RTK **Products**

A GNSS Reference Station is a "server" of observations.

(GPS + Tilts + Meteo)

A Post-processing rover user wants to **download** RINEX files from a Web server

FTP)

The **Central Processing Facility** need to **control** the "server" parameters and to **collect** observations from the RS "server" <u>and</u> to re-distribute observations and corrections.

- when it has to be **right**

A RTK rover user wants to get in **real time** observations and corrections **from the air** (wireless Internet).

Geosystems

Applications

Building Construction

Precise Vehicle Tracking

Utilities Sector

Emergency Services

GPS Monitoring

Port Operations

Land Surveving

Machine Control

Agriculture

BENEFITS:

Single GNSS Permanent Reference Stations

- No local base station required
- Reduced user equipment costs
- Higher productivity
- Working on a common datum
- Power and communications
- Security
- Site selection clear sky view
- Common good infrastructure

If we need to cover a larger area? We have to « network » the single RS's leica en it has to be right

Motivation for Network RTK

- Improve accuracy, reliability and availability
- Make rover performance more uniform across the network
- Reduce the number of stations required to cover the area

Benefits of GPS RTK Network

Geosystems

GNSS Survey assisted by GNSS Network RTK...

I just connect to a mobilephone number and the GNSS Rover RTK is getting corrections from KOCMOC Moscow to fix the point at 1 cm ...

> My Total Station is getting precise coordinates by using GNSS receiver integrated ...and connected to the Kunming GNSS Network RTK

Leica Observativ

TCRP1202

144

Network RTK BENEFITS

- Increased coverage
- Improved availability
- Improved reliability
- Faster rover initialisations
- Consistent high accuracy
- Higher productivity
- No local base station required
- Fewer reference stations needed
- Working on a common datum

Software Solutions & Management

For Networks G.N.S.S

GPS Spider System Overview

- GPS Spider is the Leica GPS reference station and network software
- GPS Spider is built in different modules following an unique architecture offering both un-equalled flexibility and scalability
- SpiderNet is the networking solution of GPS Spider
- Conveniently configure and start GPS receivers
- Automatically monitor GPS receivers and data streams
- Manage GPS Raw and RINEX data
- Compute station coordinates in real-time or postprocessing for monitoring applications
- Process GPS Network corrections in real-time or postprocessing
- Generate and distribute Single Base and Network RTK corrections in various formats
- Manage and monitor RTK rover users, generate logs for accounting & billing

GNSS Networks SmartNet UK

Infrastructure – Owned by **Ordnance Survey**

Leica SmartNet GB -**Operational Dec. 2005**

Leica SmartNet Ireland -**Operational July 2007**

Stations Ireland Network: 22 sites in total

19 GRX1200 GG Pro

smartnet.leica-geosystems.co.uk

Leica GNSS Spider – Versatile Functionality Spider Business Center

Unique User Management

- Manage RTK rover user access
- Authentication and authorisation for realtime product services
- Auditing and accounting allow to charge for services
- Advanced access control by ...
 - data formats or access channel
 - Regional geographic area
 - Temporal restriction
 - Multiple connections

Monitoring Software

- GNSS QC data analysis software
- GeoMoS multi-sensor monitoring softwar
- GPS Spider processing software

Recent Projects

- Jiangyin Bridge, China
- IFC building, Hong Kong
- Ancona landslide monitoring, Italy

GNSS Reference Stations and Networks Expandable & Multi-Applications

- Bridge monitoring
- Tall Building monitoring
- Water Dam/Reservoir monitoring
- Seismic monitoring
- Landslide monitoring, subsidence
- Weather Forecasting
- Volcano monitoring
- Tide Gauge monitoring
- Agriculture
- Pipe Line, Oil and Gas Industry
- Offshore Platform
- Open Pit Mines
- Railway, Airport, Harbour
- Surveying & GIS

A GNSS Reference Station

... is Forever !

THANK YOU FOR YOUR ATTENTION AND COOPERATION

тар хоть

GPS SpiderNET – Architecture Overview

Why do monitoring ?

Everything is moving - How much ?

 Measurements assists understanding – long term monitoring and storage of results

- Measurements assist prediction when will it fail ? Operational efficiency – steeper slopes in mines, reduced materials cost in contruction
- Safety of people, equipment and machinery (injuries or death, legal action, lost production)
- Slope/Structural management maintenance on demand
- S
- Government regulations often require monitoring
- Reduce risk and insurance premiums \$\$\$\$.

