SIRGAS

SIRGAS: an international collaborative enterprise of the geodetic community in Latin America and the Caribbean

Claudio Brunini

President of SIRGAS Universidad Nacional de La Plata, Argentina

Laura Sánchez

Vice-president of SIRGAS Deutsches Geodätisches Forschungsinstitut, Germany

Hermann Drewes

IAG representative and scientific advisor of SIRGAS Deutsches Geodätisches Forschungsinstitut, Germany

Wiliam Martínez President of SIRGAS Working Group II

Instituto Geográfico Agustín Codazzi, Colombia

UN/Azerbaijan/USA/ESA Workshop on the Applications of Global Navigation Satellite Systems, Baku, Azerbaijan, 11 – 15 May 2009

Organization of the presentation

- I. Why do we need a Terrestrial Reference Frame (TRF) for Geosciences, Geospatial Data Infrastructures and Navigation?
- II. How does SIRGAS provide to geoscientists, geospatial data users and navigation service providers the TRF for the Americas?

SIRGAS

Geodesy for a changing planet

According to Helmert (1880): the science of measuring the earth's surface.

Technological advances (artificial satellites, extragalactic observations, etc.);

Scientific advances (physical models, computational methods, etc.).

Nowadays: the science of measuring <u>changes</u> of the <u>Earth System</u>.

The Earth System and its changes

Geodynamic and Global Change are processes inside and between the components of the Earth System.

Geodetic observations are sensitive to those changes; just one example ...

Geoid variations from GRACE, attributed to seasonal changes in the water mass

SIRGAS

Height variations from GNSS, attributed to water mass loading

Cycle of the water according to GRACE

GRACE continuously measures the range between two satellites with micron-level precision.

This range varies in response to the irregularities in the mass distribution of the Earth System.

Provided that <u>satellite orbits are</u> <u>accurately known</u>, GRACE

measurements can be converted to changes in the mass distribution.

□ The largest change is attributed to water mass exchange:

precipitation – evapotranspiration – water runoff = water storage in the soil

Satellites orbits must be tied to an <u>accurate</u> and <u>stable</u> TRF, otherwise TRF variations can be translated to satellite orbits and misinterpreted as mass variations.

- Geodesy is able to measure several signals of geodynamic and global change processes, including the whole cycle of the water.
- Signals are very small (mm/year)!
- Changes refer to something that does not change, i.e.: <u>measurements</u> and <u>satellite orbits</u> must be referred to a <u>fixed</u> TRF!!
- This <u>fixed</u> TRF must be materialized over a <u>continuously changing</u> planet!!!
- It must support millimeter-level accuracy and ensure stability over decades.
- TRF changes must be <u>continuously</u> monitored with <u>mm/year</u>-level accuracy to allow reducing the observations to a <u>conventionally fixed</u> TRF.
- Continuously means 24 hours per day abd 365 days per year.

TRF provides the backbone of the <u>global</u> geospatial data infrastructure, which encompasses cadastre, natural resources, and much other information needed for ensuring the sustainable development of humanity.

TRF is crucial for accurate and safe <u>global</u> navigation over air, sea, and land.

www.sirgas.org

ITRF and SIRGAS

in order to provide detailed reference to all users of geospatial data.

SIRGAS is the ITRF densification in Latin America and the Caribbean.

Geocentric Reference System for the Americas

SIRGAS

SIRGAS operates a continental-size distributed observatory, the SIRGAS-CON (Continuously Observing Network).

□ It encompasses ~200 GNSS receivers, data links, 10 data centres, 4 analysis centres and 2 combination centres.

Receivers are operated by many institutions in an international voluntary cooperation framework.

SIRGAS-CON comprises two hierarchical levels:

✓ a continental (C) network, with ~100 stations all over the continent;

 ✓ several densification (D) networks comprising the fundamental points of the national networks of all SIRGAS countries.

At present, there are 3 D-networks but it is expected to have one per country.

Instituto Brasileiro de Geografia e Estatistica, Brasil

- Instituto Geográfico Agustín Codazzi, Colombia
- ✓ Universidad Nacional de Cuyo, Argentina
- ✓ Deutsches Geodätisches Forschungsinstitut, Germany

Experimental Analysis Centres

- Instituto Nacional de Estadística,
- Geografía e Informática, México
 - Instituto Geográfico Militar, Argentina
- Instituto Geográfico Militar, Ecuado.
 - ✓ Universidad del Zulia, Venezuela

Servicio Geográfico Nacional,

Uruguay

- SIRGAS is driving a powerful capacity building process in the Americas.
- Eight Analysis Centres were installed during the last four years in Latin American institutions.
- Three of them have successfully suppurated the experimental phase and are fully operational, while the others are in process of validation.
- Capacity building activities are performed by:
 - ✓ The "SIRGAS School on Reference Systems", intended to provide the theoretical background; and
 - ✓ The "Training Courses for Analysis Centres", intended to provide the practical training.
- The next SIRGAS School will take place from July 13 to 17, 2009, at the Instituto Geográfico Agustín Codazzi (Colombia).

□ SIRGAS was recommended as official reference frame for the America's countries by the 7th United Nations Regional Cartographic Conference for the Americas (New York, January 2001).

□ It is the basis for all practical applications that require reliability and accuracy such as cadastre and land information, oil prospecting, GNSS navigation, etc.

□ It provides the best reference frame for scientific studies such as cortical deformation, mass transport, sea-level height variations, etc.

Besides reference frame maintenance, SIRGAS-CON observations are used for remote sounding of the earth's atmosphere (water vapor and electron content estimation, space weather monitoring, etc.) and for SBAS assessment in the region.

□ It is one of the most successful initiatives of Geodesy regarding international, voluntary collaboration.

Many thanks for your attention

See more in ...

www.sirgas.org

