HSTI Science Activities

Aimin Niu
Ingrid Dietlein, Mika Ochiai, and Takao Doi

Space Applications Section
United Nations Office for Outer Space Affairs
16 November 2011
Topics

- Brief Review of HSTI Origin and Objectives

- HSTI Science Activities
 - Zero-Gravity Instrument Distribution Project
 - Educational Project

- Summary / Challenges
The Human Space Technology Initiative (HSTI)
- Launched by UNOOSA in 2010.
- Built on the relevant recommendations of UNISPACE III in 1999.
- Implemented under the framework of the United Nations Programme on Space Applications.

HSTI Objectives
- Promote international cooperation opportunities
- Exchange information and create awareness on human space technology (e.g. UN/Malaysia Expert Meeting)
- Build capacity on human space technology and its applications.
Zero-gravity Instrument Distribution Project

Why to distribute

- Zero-gravity, also called weightlessness or microgravity, is the absence of gravity. It is best illustrated by astronauts floating in their spacecraft.
- Zero-gravity can provide a better understanding of fundamental questions of science and for the solutions of problems on Earth.
- Life science research and experiments under zero-gravity will be needed for humans to venture beyond the Earth-bound existence.
- Since there are many methods to achieve zero-gravity, including ground-based, aircraft, suborbital and orbital providing different duration of microgravity, distributing ground-based zero-gravity instruments for education and research is possible.
- Zero-gravity research and education is a means of capacity building.
HSTI Science Activities

Zero-gravity Instrument Distribution Project

- How to obtain zero-gravity
 - There are at least six methods to obtain or simulate zero-gravity.
 - Spacecraft (space station/space lab/space shuttle/satellite)
 - Sounding rocket flight
HSTI Science Activities

Zero-gravity Instrument Distribution Project

- Airplane parabolic flight

20-30 seconds, 10^{-2}

$L=(1/2)g t^2$

2.2-10 seconds, 10^{-4}

- Drop tower (drop tube, drop shaft)
HSTI Science Activities
Zero-gravity Instrument Distribution Project

- Neutral buoyancy simulator
- Slowly spinning an object

Simulation of effect
Encoding buoyancy
Months/days

Use rotation to negate the effect of gravity
Suitable rotation speed is needed
Months/days

Environment controllable clinostat
What to distribute
UNOOSA is planning to distribute two types of zero-gravity instruments:

- Clinostats for observing plant-growth and crystal growth:
 - Two-Axes Clinostat
 - Conduct experiments in three-dimensional random motions
 - One-Axis Clinostat
 - Conduct experiments in simulated zero-gravity
 - Train students to prepare and run scientific experiments

- Desktop drop-tube type instrument for observing short duration physical phenomena such as combustion and fluid motion.
HSTI Science Activities

Zero-gravity Instrument Distribution Project

- How and when to distribute

Cycle 1

- 2012
- 1: Selecting Instruments
- 3: Acquiring Instruments
- 6: Application / Selection
- 9: Distribution
- Announcement of Opportunities
- Selection

Cycle 2

- 2013
- 1: Selecting Instruments
- 3: Acquiring Instruments
- 6: Application / Selection
- 9: Distribution
- Announcement of Opportunities
- Selection

Cycle 3

- 2014
- Review
- 2015

- Cycle 1
- Cycle 2
- Cycle 3
- Cycle 4

UNOOSA
Educational Project

Why
- The development or utilisation of space technology requires knowledge and scientific competences
- Conducting education project is another means of capacity building

Potential Target Groups
- Researchers/Teachers: information, training
- Students: training, education
- General public: awareness

Objectives
- Inform researchers and students about possibilities and benefits of microgravity research and provide access to necessary information
- Motivate students for scientific studies and provide some basic knowledge in microgravity science and human space technology
- Create awareness on utilisation and benefits of human space technology
HSTI Science Activities

Educational Project

How

- Develop and publish materials
 - HSTI brochure
 - Educational materials
 - What is zero-gravity;
 - How do humans live in space?
 - How to prepare a zero-gravity experiment?
 -
 - Training materials
 - How to design a zero-gravity experiment for a specific facility type (drop tower, RPM....) ?
 - How to train students for zero-gravity research?
 -
 - Information materials
 - What is human space technology and its benefits?
 - What are the possibilities for zero-gravity research?
 - What is zero-gravity research?
 -
According to request, UNOOSA invites experts and astronauts to give lectures:

- Technical Lectures for universities and institutions
 - Benefits and brief history of human space activities
 - Space policy
 - Space environment
 - Space system design
 - Space technology
 - Space business and management
 - Space applications
 - Space science
 - Space social science and humanity
 - …...

- Launch “An Astronaut in The Classroom” project for schools
 - Invite astronauts to classrooms to share their space experience
HSTI Objectives:
– Promote the use of human space technology and its application.

Planned activities:
– Distribution of zero-gravity instruments
– Distribution of training and education materials, organizing lectures at universities and schools

Challenges to be overcome
– In-cash / In-kind contributions for Zero-gravity Instrument Distribution Project
– Collaboration with experts on microgravity science and human space technology for Educational Projects
– Collaboration with space agencies and institutions for resources in space experiment, astronauts selection assistance, training and flights.
Let’s go to space, together!

aimin.niu@unoosa.org