GPS measurements of current crustal movements along the Gulf of Suez, Egypt.

Presented By

Nadia Abo-Ali
Assistant Researcher
At
National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Egypt.

1. Notes About NRIAG
2. Global Positioning System (GPS)
3. Case Study (Gulf of Suez)
1. Notes About NRIAG

The National Research Institute of Astronomy and Geophysics (NRIAG) is the one of the oldest scientific institutions in Egypt (1903). The institute serves as a consultant agency in its field of specialization for the national plans of the permanent development of Egypt.
1.1 NRIAG Departments and Laboratories

- National Data Center
- Geodynamics
 - Crustal Movement Lab.
 - Geoelectric Lab.
- Geomagnitic & Geoelectric
 - Geomagnitic Lab.
- Seismology
 - ENSN
- Space and Sun Researchs
 - Space Research Lab.
 - Sun Research Lab.
- Astronomy
 - Steller Lab.
 - Galactic and Extra Galactic Lab.
 - Qattamia Astronomical Observatory
- Gravity Lab.
- Mesalat Geomagnetic Observatory
- -Permanent GPS Stations
- - Mapping Unit
2. Global Positioning System (GPS)

- GPS structure
- How GPS Works
- GPS Errors
- GPS Application
- Applying GPS in Crustal Deformation
2.1 Structure of GPS

- GPS, which stands for Global Positioning System, is the only system today able to show you your exact position on the Earth anytime, in any weather, anywhere.

GPS consists of three segments: space segment satellites, control segment and user segment.
2.2 How GPS Work

- All satellites have clocks set to exactly the same time.
- All satellites know their exact position in space from data sent to them from the systems controllers.
- Each satellite transmits its position and a time signal.
- The signals travel to the receiver delayed only by distance traveled.
- The receiver calculates the distance to each satellite and trilaterates its own position.
2.3 GPS Errors
2.4 GPS Applications

GPS was primarily designed to be used by the military. However, many industries have found it to very useful. These days people are using GPS in ways that make their work more productive, safer, and sometimes even easier. There are five main uses of GPS today:

1. Location- determining a basic position.
2. Navigation - getting from one location to another.
3. Tracking - monitoring the movement of people and things.
5. Timing - providing precise timing.
2.5 Applying GPS in Crustal Deformation

The following steps have to be followed for monitoring movements on the Earth’s surface using GPS:

- Design and establishment of geodetic networks.
- Carrying out the repeated measurements (In NRIAG we have two ways of collecting GPS data, continuous and discontinuous techniques).
- Final analysis of repeated measurements using the scientific software (such as Berenes, GAMIT, GIPSY).
2.6 Distribution of GPS stations (geodetic networks) in Egypt
This study aims to shed light on the current state of recent crustal movements and its relationship to seismicity and tectonics along the Gulf of Suez, Egypt, and try to solve many questions and problems connected with the geodynamics.

3.1 Tectonic setting

3.2 Seismicity

3.3 Collecting and Analysis of GPS data

3.4 Results and Discussion
The Gulf of Suez, an important shipping route for oil and other products, lies along the edges of the African country of Egypt and the Sinai Peninsula. The Gulf of Suez is approximately 195 miles (314 km) in length. The width runs from 12 to 27 miles (19 to 43 km).
3.1 The Current Situation of the Gulf of Suez
Tectonic and accommodation zones in the Gulf of Suez (After S. Khalil, 1998).
3.2 Seismicity of the Gulf of Suez 1900-2010 (the seismological data obtained from ENSN)
Seismicity and focal mechanism of the Gulf of Suez associated with the seismotectonic zones. After (Enayat, A.A., 2005).
The paleostress directions in the Gulf of Suez. (after Lyberis, 1988; and Steckler et al., 1988)

a- Early Miocene
b- Middle to late Miocene.
c- Plio-Quaternary.
3.3 Gulf of Suez Network

Sinai Network
From 1997 to 2003

Gulf of Suez Network
From 2007 until now
Deformation Parameters along the Gulf of Suez from 1997 to 2003

Rate of Horizontal displacement vectors

Distribution of the dilatation strain rates

Distribution of the maximum shear strain rates
3.4 Gulf of Suez Results
3.4.1 Velocity Results

The annual horizontal Velocity derived from GPS for the period from 2007 to 2010 in ITRF 2005
The Residual Horizontal Velocity along the Gulf of Suez
3.4.2 Strain Results
The annual Principle Strain along the Gulf of

Present-day stress field deduced from focal mechanisms (Abou Elenean, 2007)
Annual rotation rates along the Gulf of Suez geodetic network blocks

Tectonic and accommodation zones in the Gulf of Suez (After S. Khalil, 1998).
Annual Deformation Parameters along the Gulf of Suez
Kinematics model of the Suez rift based on the new finding of seismological and GPS surveying.
CONCLUSION

- The horizontal velocity of the Gulf of Suez network (including the velocity of the African plate) coincides with the plates' kinematic model.

- From the obtained residual horizontal velocity, the Gulf of Suez area can be divided into two main parts, eastern and western. The average rate of velocity on the eastern side is about 5mm ± 1.17mm per year in the north to northeast direction, while for the western side is about 4.5mm ± 1.15mm per year in north to northwest direction, which can be regarded to the opening of the Gulf.

- Principle axes of the strain rates across the blocks of the network indicate that the Gulf of Suez is suffered from extensional forces acting in the NNE-SSW to NNW-SSE direction.

- Annual rotation rates along the Gulf of Suez geodetic network blocks show that the southern and northern parts of the gulf rotate in anti-clockwise direction, while the middle part of the gulf rotates in clockwise direction, which consistent with the tectonic setting of the area.

- Deformation parameters of strain indicate that the area divided to three provinces in addition to Cairo-Suez-district zone which similar to seismotectonic zones.
THANKS