Intermediate reference frame for Uzbekistan topographic maps

Mirmakhmudov E.¹, Prenov Sh.¹, Magdiev Kh.², Fazilova D.³

¹National University of Uzbekistan
²National centre of geodesy and cartography (Uzbekistan)
³Astronomical Institute of the Uzbek Academy of Sciences

phone: (+998-71)234-67-54, (+998-90) 966-38-80 (cell.)
e-mail: erkin_mir@yahoo.com, erkin_mir@mail.ru

Contents

1. GNSS in Uzbekistan
2. Bessel ellipsoid (1841)
3. Coordinate system SK32
4. SK42 (Pulkovo, Russia)
5. Gauss-Kruger Projection
6. Reference frame
7. Conclusion
Before 1995-2000

CS42

• National University of Uzbekistan
• National Centre of Geodesy and Cadastre
• Astronomical Institute of the Uzbek Academy of Sciences

Now

CS42

Triangulation tower

Bench Mark

In the future

PZ90(SC95)

WGS84

Central Asian triangulation measurement were produced in Tashkent coordinate system (1875). This works are based on the Bessel –ellipsoid (1841), \(a = 6377397 \text{m.} \), \(\alpha = \frac{1}{299.14} \).

The measurement and calculated the longitude for 900 points (rms= ± 0°.25).

In 1950 about 50% of the European triangulation networks and about 20% of other continents networks (also Russia and Uzbekistan) were based on the Bessel ellipsoid.

\[\lambda = -4^h 37^m 10.80^s \quad 1891 \]
\[\varphi = 41^0 19' 31'' .48 \quad 1895-1896 \]
Origin: Sablino, Russia. 1930.

Bessel reference ellipsoid

\[a = 6377397.155m \]
\[b = 6356078.963 \]
\[f = 1 : 298.3 \]
\[\Delta X = 382 m \]
\[\Delta Y = 151 m \]
\[\Delta Z = 574 m \]
\[\Delta \alpha = 739.845 \]
\[\Delta f = 0.10037483 \]

Origin: Bugry, Russia. 1942.

Krasovsky reference ellipsoid

\[a = 6378245 m \]
\[b = 6356863 \]
\[f = 1 / 298.3 \]
\[B_0 = \phi_0 - \xi_0 = 59^0 46' 18'\,71 - 0'\,16 = 59^0 46' 18'\,55 \]
\[L_0 = \lambda_0 - \eta_0 \sec B_0 = 30^0 19' 38'\,55 + 3'\,54 = 30^0 19' 42'\,09 \]
\[A_0 = \alpha_0 - \eta_0 \tan B_0 = 121^0 40' 36'\,13 + 2'\,66 = 121^0 40' 38'\,79 \] (Bugry)

\[\xi_0 = -dB_o = 0.16'' \]
\[\eta_0 \sec B = -dL_o = -3.54'' \]
\[\eta_0 = 1.78'' \]
THE GAUSS-KRUGER PROJECTION

Gauss K F

(1777 – 1855)

\[x = S + \frac{l^2}{2} r \sin B + \frac{l^4}{24} r \cos^2 B \sin B (5 - t^2 + 9\eta^2 + 4\eta^4); \]

\[y = lr + \frac{l^3}{6} r \cos^2 B (1 - t^2 + \eta^2) + \frac{l^5}{120} r \cos^4 B (5 - 18t^2 + t^4 - 14\eta^2 - 58\eta^2 t^2); \]

\[m = n = 1 + 0.000152l^2 \cos^2 B; \quad p = m^2; \quad w = 0; \quad t = \tan B; \quad \eta^2 = e^2 \cos^2 B, \]

UZBEKISTAN

J. Krüger

1853-1923

National University of Uzbekistan
National Centre of Geodesy and Cadastre
Astronomical Institute of the Uzbek Academy of Sciences

SK42 (Pulkovo)

\[B_0 = \varphi_0 - \xi_0 \]

\[L_0 = \lambda_0 - \eta_0 \sec B_0 \]

\[A_0 = \alpha_0 - \eta_0 \tan B_0 \]

\[y_{wgs84} - y_{sk42} = 64 \text{ m} , \quad L_{wgs84} - L_{sk42} = 2.90 \text{ arcsec} \]

\[x_{wgs84} - x_{sk42} = 9 \text{ m} , \quad B_{wgs84} - B_{sk42} = 0.23 \text{ arcsec} \]

\[h_{wgs84} - h_{sk42} = 109 \text{ m} \]

<table>
<thead>
<tr>
<th>Scale</th>
<th>(\Delta X_{wgs84-sk42})</th>
<th>(\Delta Y_{wgs84-sk42})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:100 000</td>
<td>0.09 mm</td>
<td>0.64 mm</td>
</tr>
<tr>
<td>1:50 000</td>
<td>0.18 mm</td>
<td>1.28 mm</td>
</tr>
<tr>
<td>1:25 000</td>
<td>0.30 mm</td>
<td>2.56 mm</td>
</tr>
<tr>
<td>1:10 000</td>
<td>0.9 mm</td>
<td>6.40 mm</td>
</tr>
<tr>
<td>1:5 000</td>
<td>1.8 mm</td>
<td>12.8 mm</td>
</tr>
</tbody>
</table>
The first geoid

Prof. Pomeranzev 1847-1921

The geoid of Ferghana valley (1897). B-\(\varphi\)=12.73", L-\(\lambda\)=16.31", Rms= \(\pm\)0.30"
33 points.

International Latitude station (1899)

\[\phi^* - \phi = x \cos \lambda - y \sin \lambda; \]
\[\lambda^* - \lambda = (x \sin \lambda - y \cos \lambda) \tan \phi; \]
\[\eta^* - \eta = (\lambda^* - \lambda) \cos B; \]
\[A^* - A = (x \sin \lambda - y \cos \lambda) \cos \phi. \]

Change of the north pole coordinate

IGS Network

DORIS Network

Kitab, Uzbekistan

Kit3

CHAMP

Tashkent

MAID

Maidanak
Transformation of coordinate system

\[x = (N+H) \cos B \cos L \]
\[y = (N+H) \cos B \sin L \]
\[z = (N(1-e^2)+H) \sin B \]

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
= \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}_{84}
+ \begin{bmatrix}
T_X \\
T_Y \\
T_Z
\end{bmatrix}
+ \begin{bmatrix}
\mu & \omega_Z & \omega_Y \\
-\omega_Z & \mu & \omega_X \\
\omega_Y & -\omega_X & \mu
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}_{42}
\]

\[L = \arctan \frac{Y}{X} \]
\[B^{(i)} = \arctan \frac{Z + Ne_i^2 \sin B^{(i-1)}}{r_p} \]

\[x = S + \frac{t^2}{2} - r \sin B + \frac{t^4}{24} r \cos^2 B \sin B (5 - t^2 + 9 \eta^2 + 4 \eta^4) \]
\[y = lr + \frac{t^3}{6} - r \cos^2 B (1 - t^2 + \eta^2) + \frac{t^5}{120} r \cos^4 B (5 - 18t^2 + t^4 - 14 \eta^2 - 58 \eta^4 t^2) \]
\[m = n = 1 + 0.000152l^2 \cos^2 B; \quad p = m^2; \quad w = 0; \quad t = \tan B; \quad \eta^2 = e^2 \cos^2 B, \]

\[y_{wgs84} = y_{sk42} + \Delta y \]
\[x_{wgs84} = x_{sk42} + \Delta x \]
National University of Uzbekistan
National Centre of Geodesy and Cadastre
Astronomical Institute of the Uzbek Academy of Sciences

References

2. Reigber, Ch, Angermann, D., Michel, G. W. Klotz, J., Galas, R., & the CATS-Team, GPS constraints on the distribution of deformation of the Tien Shan, N-Pamirs and behavior of the Tarim, 14th Himalaya-Karakorum-Tibet Workshop, Terra Nostra, 127, 1999.

Thank you for your attention!

The author is very thankful for financial support of the United Nations (Office for Outer Space Affairs)