
SUGAC: Sofia University GNSS Analysis Center

- Tzv. Simeonov (1), D. Sidorov (2), N. Teferle (2), G. Guerova (1), E. Egova (1), **K. Vassileva (3)**, I. Milev (4), G. Milev (5)
- (1) Faculty of Physics, Sofia University St. Kliment Ohridski, Bulgaria (2) University of Luxembourg, Luxembourg
- (3) National Institute of Geophysics, Geodesy and Geography, BAS, Bulgaria
 - (4) IPOS BuliPOS GNSS network, Bulgaria
 - (5) Space research and technology Institute, BAS, Bulgaria

United Nations/Russian Federation Workshop on the Applications of Global Navigation Satellite Systems, 18 - 22 May 2015, Krasnoyarsk, Russia

- SUGAC: established in 2013 by the GNSS Meteorology group at Sofia University
- First processing campaign: in collaboration with BuliPOS GNSS network and Prof. N. Teferle, University of Luxembourg
- Long term objective: deliver GNSS tropospheric products in real time for E-GVAP service

Source: E-GVAP real time processing network (http://egvap.dmi.dk).

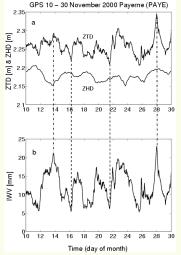

SUGAC processing campaign: 2013

Why **What**

> GNSS Me NWP Results

Fog Conclus

- NAPEOS GNSS processing software developed by ESA
- Precise Point Positioning (PPP) processing with IGS orbits and clocks
- Global Mapping Function (GMF, Boehm et al., 2006)
- elevation cut-off angle 10°
- Zenith Total Delay (ZTD) temporal resolution 5 minutes



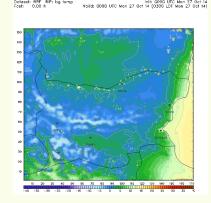
Source: BuliPOS GNSS network used in SUGAC processing (http://www.bulipos.eu/).

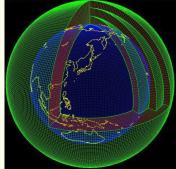
GNSS Met

 ZHD and IWV computed from ZTD with surface pressure and temperature from the WRF model

GNSS Meteorology explained: https://www.youtube.com/watch?v=t1inZaRdWY4

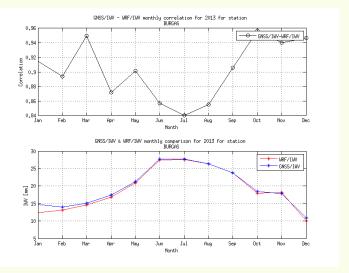
Source: Guerova et al., 2003. Validation of NWP mesoscale models with Swiss GPS Network AGNES. Journal Applied Meteorology, 42, 1, 141-150.

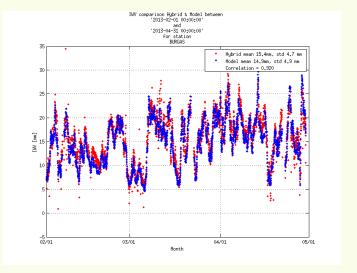

What How

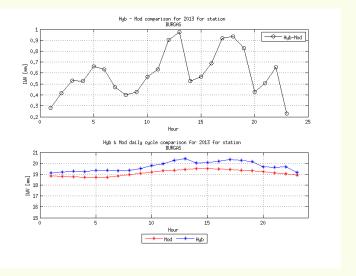

How GNSS Met NWP

Fog

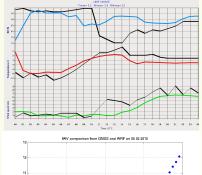
00..0.0

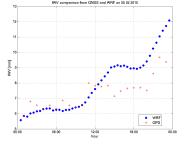

- Weather Research and Forecasting (WRF) model simulations for Bulgaria
- horizontal resolution 9 km, 44 vertical levels
- temporal resolution 30 min.




- What
- How GNSS Me NWP
- IWV Fog
- Conclus

- very good agreement between GNSS and WRF for the monthly mean IWV
- correlation 0.84 in July, 0.96 in October





• the model tends to underestimate IWV by about 0.6 mm

Why
What
How
GNSS Me
NWP
Results
IWV
Fog

- from 00 to 10 UTC relative humidity (RH) above 95 % fog
- 11 UTC RH drop to 75 %
- from 00 to 10 UTC -Integrated Water Vapour (IWV) 6 to 7 mm
- 11 UTC increase of IWV to 8 mm
- IWV increase is due to transition from liquid water to water vapour and this is clear indication that the fog is dispersing
- very good timing between RH and IWV

Conclusion

- Successfully completed the first GNSS tropospheric processing campaign of SUGAC for 2013
- Processed 7 Bulgarian GNSS station with NAPEOS software in PPP mode
- Comparison of IWV from GNSS and WRF model shows very good agreement
- GNSS-WRF IWV correlation low (0.8) in summer high (0.9-0.95) in winter
- the WRF model tends to underestimate the IWV on averaged by 0.6 mm
- case studies of radiation fog show potential for application of GNSS IWV for monitoring the fog dynamics and dispersion

THANK YOU!