FAA WAAS Update

Presented by Tom Stansell in Krasnoyarsk on 18 May 2015

Presented by: Deborah Lawrence, FAA Manager of Navigation Programs

Presented to: Munich Satellite Navigation Summit

Date: March 2015
Topics

- WAAS Program Status
- WAAS Performance
- User Segment Update
Wide Area Augmentation System

38 Reference Stations
3 Master Stations
6 Ground Earth Stations

3 Geostationary Satellite Links
2 Operational Control Centers
WAAS Development Phases

- **Phase I: IOC (July 2003) Completed**
 - Included Development of a robust safety architecture
 - Included establishment of WAAS expert panel to evaluate potential integrity threats

 - Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
 - Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed Ionospheric threats

 - Completed System updates to improve performance during moderate ionospheric activity
 - Supported continuous monitoring of system data that contributes to continued integrity assurance
 - Began transition of Second Level Engineering from contractor based to organic FAA capability

- **Phase IV: Dual Frequency (L1,L5) Operations (2014 – 2044)**
 - Includes the transition from use of L2 to L5 in WAAS reference stations
 - Infrastructure modifications to support future L1/L5 user capability
 - Support sustainment of WAAS GEOs
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 1 Processor Upgrade</td>
<td></td>
<td></td>
<td></td>
<td>12/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release 2 GEO 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6/17</td>
<td></td>
</tr>
<tr>
<td>Release 3 G-III Multicast Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9/17</td>
<td></td>
</tr>
<tr>
<td>Release 4 C&V SC Validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/18</td>
</tr>
<tr>
<td>Release 5 GPT SC Validation and GEO 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9/19</td>
</tr>
</tbody>
</table>
WAAS Phase IV Dual Frequency Operations

- **Original WAAS plan was to enter DF phase in 2014 with a completion date by 2019**
 - New dual frequency L1/L5 service needed to further improve WAAS availability and continuity
- **Due to the changes to the GPS L5 launch schedule, the WAAS Program Office reassessed its DF integration schedule, dividing it into two segments**
 - Segment 1 (5-7 year effort)
 - Develop infrastructure improvements to enable use of L5
 - G-III Reference Receiver Integration, Communications Infrastructure Upgrade, Safety Computer Integration
 - The Federal Aviation Administration awarded the Wide Area Augmentation System (WAAS) Dual Frequency Operations (DFO) Segment 1 contract to Raytheon Company on September 26, 2014
 - Segment 2 (5-7 year effort)
 - Implementation of L1/L5 user capability (follows L5 FOC)
 - Algorithm updates to use L5 and implement dual frequency service
 - Dual Frequency Messaging
- **Program re-baseline approved by FAA’s Joint Resource Council (JRC), May 2014**
- **‘Sunset’ of L2 P(Y) compels WAAS to use another signal to maintain current service**
 - Change required independent of decision on whether to implement a dual frequency service
- **GEO sustainment planned for rest of WAAS service life**
 - Maintain minimum of dual coverage over WAAS service area
 - GEO Sustainment currently planned until 2044
Federal Register Notice

- **L1/L2 Sunset**
 - In 2008 the Office of Space Commercialization produced a Federal Register Notice detailing the U.S. Government’s plan to no longer guarantee L2 P(Y) phase relationship necessary for codeless and semi-codeless use beyond 12/31/2020.
 - FAA interest to maintain semi-codeless technique for two years following 24 L5 satellites on orbit to provide transition time
 - Will review 2014 FRP language
GEO Activities

- **Current WAAS GEO satellites**
 - Intelsat Galaxy XV (CRW)
 - Anik F1R (CRE)
 - Inmarsat I4F3 (AMR) *

* - AMR is a non-ranging satellite

- **GEO 5/6 Acquisition**
 - Contract awarded September 2012
 - Eutelsat 117 West B (Satmex-9) satellite will host the WAAS GEO 5 Satellite Payload
 - Orbital slot (116.8° West) will provide full coverage
 - Scheduled for operations by Oct 2017
 - GEO 6 Satellite opportunities currently under investigation
G-III Comm Integration

- **Test Bed Operational**
 - Shadow system became operational December 9, 2014
 - To be completed by May 2015

- **G-III Software Integration Completed March 2015**

- **Cutover of Network 1 and Network 2 CORE Comm**
 - Scheduled to be completed August, 2015

- **Cutover of First WRS site (ZLA) projected operational September 2015**
 - All WRS sites cutover by July 2016
WAAS Phase IV Investigations

- **Dual-Frequency Multi-constellation Capability**
 - International Focus is on taking advantage of other GPS-like constellations
 - International Civil Aviation Organization (ICAO) Navigation Systems Panel (NSP) has developed work plan that supports development of future standards for use of other Global Navigation Satellite Systems (GNSS)
 - **User Equipment Standards for Dual-Frequency Operations**
 - Minimum Operation Performance Standards (MOPS) for Dual-frequency GPS currently looking to obtain stakeholder involvement
 - FAA working with Interoperability Working Group (IWG) on definition document that provides the basis for interface design and MOPS development for L1/L5 and multi-constellation
 - RTCA is amending SC-159 Terms of Reference (ToR) to include MOPS work on GPS/GLONASS, GPS/SBAS DF and enabling Multi-Constellation (MC), GPS/GBAS DF

- **Advanced RAIM (ARAIM)**
 - Avionics-centric approach to dual-frequency multi-constellation
 - US/EU technical group finalizing concept definition the 3rd Milestone of their work plan
 - Milestone 3 will address stakeholder input to the concept and proposed architecture alternatives
 - It will also include a road map outlining a path toward requirements development, validation and implementation inline with current industry avionics development plans
WAAS Coverage

2003 IOC – LPV Coverage in lower 48 states only

2008 Coverage - Full LPV 200 Coverage in CONUS (2 Satellites)

2013 Coverage - Full LPV 200 Coverage in CONUS (3 Satellites)

Munich Satellite Navigation Summit
March 2015
Airports with WAAS LPV/LP Instrument Approaches

As of Feb 5th, 2015
- 4,109 LP/LPVs combined
- 3,523 LPVs serving 1,731 Airports
- 908 LPV-200's
- 2,385 LPVs to Non-ILS Runways
- 1,138 LPVs to ILS runways
- 1,630 LPVs to Non-ILS Airports
- 586 LPs serving 426 Airports
- 563 LPs to Non-ILS Runway
- 3 LPs to ILS Runways
WAAS STC Aircraft December 2014 (Estimate)

Garmin – 73,184 aircraft
- GA Aircraft (See FAA Garmin Approved Model List (AML)). Most GA Part 23 aircraft.

Universal Avionics – 2,380 aircraft
- 122 fixed wing and 12 helicopter types and models

RockwellCollins – 1,930 aircraft
- 39 Types and models
- Latest Aircraft – Embraer Legacy 500

Honeywell /CMC Electronics) – 921 aircraft
- 22 types and models

Avidyne – 238 aircraft
- 6 types and models (Cirrus SR 20 & 22, Piper Matrix & Mirage, Piper Saratoga NX, and EA-500)
- IFD 540 WAAS LPV - (STC complete July 2014 – AML STC approved for over 1,000 aircraft makes and models)

Genesys Aerosystems (Chelton) – 247 aircraft

Innovative Solutions & Support (IS&S) – 200 aircraft
- Eclipse 550/500
- Boeing 737-400 (pending)

Thales – 5 aircraft
- Airbus A300-600ST (Beluga)
- Airbus A400M (Military)
- Airbus A350XWB - pending

TOTAL Estimated WAAS LPV Equipped Aircraft – 79,105
Questions
GNSS Enables PBN and ADS-B

<table>
<thead>
<tr>
<th></th>
<th>Navigation (≥ 99.0% Availability)</th>
<th>Surveillance (≥99.9% Availability)</th>
<th>Positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy (95%)</td>
<td>Containment (10^-7)</td>
<td>Separation</td>
</tr>
<tr>
<td>APNT En Route</td>
<td>*10 nm</td>
<td>20 nm</td>
<td>5 nm</td>
</tr>
<tr>
<td></td>
<td>*4 nm</td>
<td>8 nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*2 nm</td>
<td>4 nm</td>
<td></td>
</tr>
<tr>
<td>Terminal</td>
<td>*1 nm</td>
<td>2 nm</td>
<td>3 nm</td>
</tr>
<tr>
<td>LNAV</td>
<td>*0.3 nm</td>
<td>0.6 nm</td>
<td></td>
</tr>
<tr>
<td>RNP (AR)</td>
<td>*0.1 nm</td>
<td>**0.1 nm</td>
<td>2.5 nm DPA</td>
</tr>
<tr>
<td>LPV</td>
<td>16m/4m</td>
<td>40m/50m</td>
<td>2.5 nm DPA</td>
</tr>
<tr>
<td>LPV-200</td>
<td>16m/4m</td>
<td>40m/35m</td>
<td>2.5 nm DPA</td>
</tr>
<tr>
<td>GLS Cat-I</td>
<td>16m/4m</td>
<td>40m/10m</td>
<td>2.0 nm IPA</td>
</tr>
<tr>
<td>GLS Cat-III</td>
<td>16m/2m</td>
<td>40m/10m</td>
<td></td>
</tr>
</tbody>
</table>

* Operational requirements are defined for total system accuracy, which is dominated by flight technical error. Position accuracy for these operations is negligible.

** Containment for RNP AR is specified as a total system requirement; value representative of current approvals.

<table>
<thead>
<tr>
<th>Dependent Parallel Approach (DPA)</th>
<th>Surveillance Integrity Level (SIL)</th>
<th>Navigation Accuracy Category for Position (NACp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Parallel Approach (IPA)</td>
<td>Navigation Integrity Category (NIC)</td>
<td></td>
</tr>
</tbody>
</table>
G-III Capabilities

- **Satellite Tracking**
 - 18 GPS, 8 SBAS
 - Upgradable for Galileo, COMPASS...with additional cards

- **Signal Tracking**
 - L1 C/A, L1C, L2P(Y), L2C and L5
 - L1C; track pilot, L1C for data demodulation
 - L2C; track CL, CM for data demodulation
 - L5; track Q5, I5 for data demodulation
 - L5 SBAS; configurable with default as track/demodulate with I5
 - Non-standard codes
 - Loaded via data interface at startup
 - L1 C/A, L1C, L2CM and L5 loaded as memory codes
 - L2CL loaded as shift register value (same polynomial)
Live Satellite Tracking (L1 C/A, L2PY, L2C & L5)
Message Type 12 Overview (MT12)

- Message Type 12 (MT12) is an optional function standardized in Annex 10 (App. B, Section 3.5.7.6.1)
 - It is defined to carry UTC timing parameters
- Alternate Position Navigation and Timing (APNT) program considering MT 12 as potential timing reference in absence of GPS signal
 - WAAS could populate MT-12 with the GPS–UTC offset parameters with simple modification to the system
 - WAAS Network Time (WNT) offset from GPS time is well within 50 ns limit defined by Annex 10 (Ch. 3, Section 3.7.3.4.5)
- Timing reference accuracy for APNT user anticipated to be within 25 ns once implemented (to be validated)
 - Proposal to use beam forming techniques to maintain tracking of GEO signals during interference conditions
SBAS Network Time / UTC Message (MT-12)

- **8 parameters identical to GPS**
- **4 for leap second**
 - Converts GPS time to UTC
 - (15 sec, 16 sec on 1 July)
- **4 to correct bias and drift**
 - Small, correction ~ 10 nsec
- **WAAS MT-12 has additional information**
 - GPS Time of Week (sec)
 - GPS Week Number (WN)
 - UTC Standard Identifier (ie USNO)
 - GLONASS indicator (whether data will be provided)
 - GLONASS offset data (optional)

GPS

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>32*</td>
<td>2^{-30}</td>
</tr>
<tr>
<td>A_1</td>
<td>24*</td>
<td>2^{-50}</td>
</tr>
<tr>
<td>$d_{t_{LS}}$</td>
<td>8*</td>
<td>1</td>
</tr>
<tr>
<td>t_{ot}</td>
<td>8</td>
<td>2^{12}</td>
</tr>
<tr>
<td>W_{t}</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>$W_{N_{LSF}}$</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>D_{N}</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>$d_{t_{LSF}}$</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

- W_{N} from Subframe 1

Bias Drift

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{WN_{t}}$</td>
<td>32*</td>
<td>2^{-30}</td>
</tr>
<tr>
<td>$A_{1WN_{t}}$</td>
<td>24*</td>
<td>2^{-50}</td>
</tr>
<tr>
<td>$d_{t_{LS}}$</td>
<td>8*</td>
<td>1</td>
</tr>
<tr>
<td>t_{ot}</td>
<td>8</td>
<td>2^{12}</td>
</tr>
<tr>
<td>$W_{N_{t}}$</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>$W_{N_{LSF}}$</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>D_{N}</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>$d_{t_{LSF}}$</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Leap Sec Ref Week

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS TOW</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>W_{N}</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>UTC Ident</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GLONASS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GLONASS</td>
<td>71</td>
<td>TBD</td>
</tr>
</tbody>
</table>

\[d_{t_{UTC}} = d_{t_{LS}} + A_0 + A_1 \times (t_{GPS} - t_{ot} + 604800 \times (W_{N} - W_{N_{t}})) \]

\[t_{UTC} = t_{GPS} - d_{t_{UTC}} \quad \text{**two's complement, sign bit MSB**} \]
Questions