2015 UN Workshop on Applications of GNSS

Introductio

Brasília cit

GLONAS

UnB Associated

Research

Conclusion

Recent Experience in Operating the First Quantum and Optical System of Satellite Laser Ranging Installed in Brazil

Renato Alves Borges, Geovany Araújo Borges, Gennady Saenko, Andrey Pavlov

 $raborges@aerospace.unb.br,\ gaborges@unb.br,\ g.saenko@mail.ru,\\ pavlov_andrey@hotmail.com$

Universidade de Brasília, Brasília - Brazil OJC - RPC - PSI, Moscow - Russia

UN/Russian Federation Workshop on Applications of GNSS IEBC, Krasnoyarsk, Russia May $18^{th} - 22^{nd}$, 2015

Timeline Overview

2006 Brazilian and Russian governments signed an agreement to install GLONASS reference and monitoring stations in Brazilian territory;

2012 Brazilian Space Agency elected University of Brasília to receive the first station:

2013 GLONASS Differential Correction Station start operation; 2014

GLONASS Quantum Optical Station start operation.

2015 UN Workshop on Applications of GNSS

Introduction

2015 UN Workshop on Applications of GNSS

Introduction

Brasília city

2015 UN Workshop on Applications of GNSS

Introduction

Brasília cit

GLONAS station at

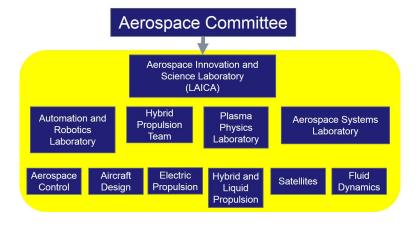
Associated

Conclusion

The University of Brasília

UnB in numbers

- 45152 undergraduate and 8019 postgraduate students;
- 173 Postgraduate programs (stricto and lato sensu);
- 2334 professors and 2738 dedicated staff;
- 80% of professors hold a doctoral degree;
- 12 distance undergraduate programs;
- 101 undergraduate programs;
- 20 Research centers:
- 26 Faculties;
- 4 Campuses;


238 agreements with universities from 50 countries and International Organizations.

2015 UN Workshop on Applications of GNSS

The UnB

Aerospace Infrastructure

Aerospace Administrative Structure

2015 UN Workshop on Applications of GNSS

Introduction

Brasília cit

GLONASS station at

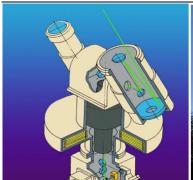
Associated

Conclusion

Compact Laser-Optical System for SLR, Angular Measurements and Photometry

Mount Parameters

Mount type Az-El, with two flanges for equipment mounting


Digitally controlled torque motor drive

Equipment weight on each mount flange $\leq 20kg$

Angular elevation rotation range from 0 to 90 deg

Angular azimuth rotation range from -270 to 270 deg

Maximum angular speed and acceleration are 30 deg/s and $5 deg/s^2$

2015 UN Workshop on

Compact Laser-Optical System Parameters

SLR of SC with retroreflectors:

Parameter Description	Feature		
SC orbit height range	400 to 36000 km		
Orbit height for SC daytime measurements	400 to 6000 km		
NP RMS error (averaging interval 60s)	0.5 to 2 <i>cm</i>		
Elevation range	20 to 85 deg		

Angular measurements:

Parameter Description	Feature
Visual star magnitude	$\leq 14^m$
RMS error for SC angular velocity up to 40	ວ"
arcsec	2

Photometry:

:	Parameter Description	Feature
	i arameter Description	i eature
	Visual star magnitude	$\leq 12^m$
	Brightness determination error	0.2^{m}

Applications of GNSS

GLONASS station at

UnB

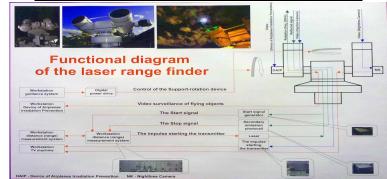
2015 UN Workshop on Applications of GNSS

Introduction

Brasília cit

The UnB

GLONASS station at UnB


Associated Research

Conclusion

Compact Laser-Optical System Parameters

· Laser ranging system parameters:

Parameter Description	Feature		
Operation wavelength	532nm		
Pulse repetition rate	300 <i>Hz</i>		
Laser pulse duration	150 <i>ps</i>		
Minimum laser pulse energy	2mJ		
Output beam divergence	5arcsec		
Receive telescope diameter	25cm		
Laser fire epochs accuracy	200 <i>ns</i>		

2015 UN

Workshop on Applications of GNSS

GLONASS station at

HnB

One Way Station and ILRS

• One Way Sation and IRLS:

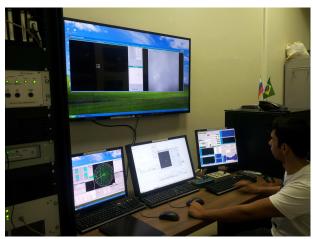
- \rightarrow L_1 and L_2 radio signals receivers for GPS and GLONASS;
- → IRLS Site Code BRAL, Station #7407, DOMES# 48081S001, 15.7731 S, 132.1347 W.

2015 UN Workshop on Applications of GNSS

Brasília cit

brasilia ci

GLONASS station at UnB


Associated

Conclusion

Operation of the QOS for SLR

Activities in this first year:

- Technical team training;
- Software and hardware update.

2015 UN Workshop on Applications of GNSS

Introductio

Brasília cit

GLONASS station at UnB

Associated

Conclusion

Operation of the QOS for SLR

Activities in this first year:

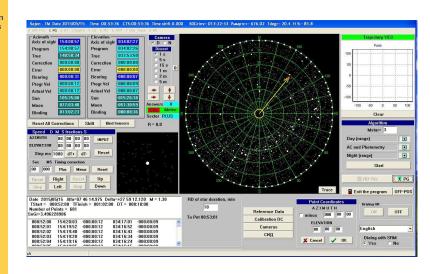
- GLONASS system and the UnB QOS presentations;
- · Authorities visits.

2015 UN Workshop on Applications of GNSS

Introduction

Brasília cit

Diagna die


GLONASS station at UnB

Associated Research

Conclusio

Operation of the QOS for SLR

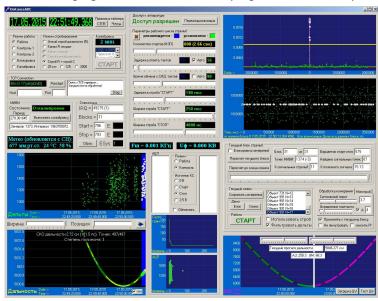
Pointing/tracking control virtual panel.

2015 UN Workshop on Applications of GNSS

Introduction

Brasília city

The LinB


GLONASS station at UnB

Associated Research

Conclusion

Operation of the QOS for SLR

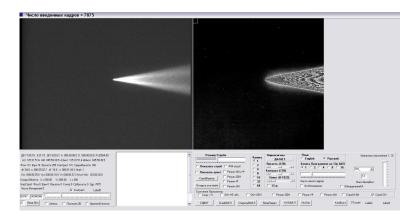
Laser ranging control virtual panel (Lageos satellite 991).

2015 UN Workshop on Applications of GNSS

troduction

Brasília cit

Drusina Ci


GLONASS station at UnB

Associated Research

Conclusion

Operation of the QOS for SLR

Night camera virtual panel (Glonass satellite 747).

2015 UN Workshop on Applications of GNSS

Introduction

Brasília cit

GLONASS station at UnB

Associated Research

Conclus

Operation of the QOS for SLR

Some statistics

монтн	WORKING DAYS	TOTAL MEASUREMENTS	SUCCESS	FAILURE	AVG. SUCCESS/DAY	% SUCCESS
Aug/2014	12	245	212	33	17.67	86.53
Sep/2014	16	414	296	118	18.50	71.50
Oct/2014	10	206	104	102	10.40	50.49
Nov/2014	9	78	8	70	0.89	10.26
Dec/2014	13	231	53	178	4.08	22.94
TOTAL	60	1174	673	501	11.22	57.33

Sample of the work done on 01/19/2015 - 27 success out of 53 tries.

Satellite	Start	Stop	Reflected	Amount	RMS	Calibration	Trajectory		
number	time	time	signal	reflected	sm	(%)	Rising	Zenith	Downward
701	00:40	00:55		-	-	13%			
745	01:05	01:13		691	3.77	13%			
733	01:26	01:42		-	-	13%			
745	01:50	01:57		1037	2.97	13%			
701	02:12	02:19		214	4.36	13%			
733	02:26	02:40		-	-	13%			
755	02:46	02:51		1359	2.86	14%			
755	03:25	03:31		900	2.9	14%			
731	03:45	03:53		443	2.91	14%			

2015 UN Workshop on Applications of GNSS

meroducedo

Brasília cit

GLONAS

UnB Associated

Research

Conclusion

Current team at LAICA in the field of GNSS:

- 4 undergraduate students (more coming soon);
- 5 professors;
- 7 technical operators and support staff.

Immediate applications:

- High-altitude balloons experiments;
- Advanced filtering solutions for GNSS/INS integration:
 - Magnetometer sensitivity to local electromagnetic disturbances makes its use limited in GNSS/INS systems;
 - Multi-model filtering can deal with such problem. MHF filters have been proposed and evaluated experimentally.
- UAV ground tracking using multi-GNSS solutions.

LAICAnSat

2015 UN Workshop on Applications of GNSS

Introductio

Brasília city

GLONASS station at

Associated Research

Conclusion

The LAICAnSat project:

- Development of a platform for aerospace systems testing and scientific experiments;
- Started in 2013 at LAICA;
- Divided in:
 - → Low Altitude Part (LAP): study of guidance of airdropped systems;
 - → High Altitude Part (HAP): high-altitude balloons experiments.

Motivation:

- Study of airdropped systems for aerial delivery application;
- Cansats educational programs from Brazilian Space Agency (AEB);
- Platform for multidisciplinary experiments;
- Students training on aerospace systems;
- Low budget.

LAICAnSat Launches

Recent
Experience
in Operating
the First
QOS of SLR
in Brazil

2015 UN Workshop on Applications of GNSS

Introduction

Brasília cit

GLONAS station at

Associated Research

Conclusion

LAICAnSat-1, May 2, 2014.

LAICAnSat-2, May 24, 2014.

LAICAnSat-1 trajectory.

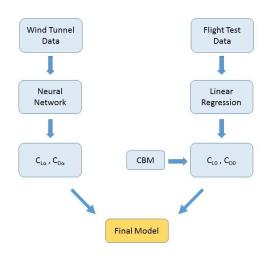
2015 UN

Workshop on Applications of GNSS

ntroductiv

Brasília cit

Brasilia cii


GLONASS station at

Associated Research

kesearch

Aerodynamic Coefficients Estimation Using GNSS

Aerodynamic model identification procedure.¹

¹A. V. S. Silva et al. System identification of a square parachute and payload for the LAICAnSat. In Proc. of the 36th IEEE Aerospace Conference, Montana, USA, March 2015.

2015 UN Workshop on Applications of GNSS

Introduction

Brasília city

GLONAS

Associated

Research

esearch

Aerodynamic Coefficients Estimation Using GNSS

- Flight tests under different weather conditions (humidity, wind, temperature);
- Analysis of straight segments of trajectory;
- Constant control deflection;
- Constant forward airspeed V₀ and wind vector V

 W

 assumption;
- V_0 and \vec{V}_W to be estimated based on GPS positions;
- Aerodynamic and gravity are the only considered forces.

Complete test trajectory.

Selected data.

2015 UN Workshop on Applications of GNSS

Brasilia cit

GLONASS station at

Associated Research

Conclusion

Future LAICAnSat Perspectives

Standardization of LAICAnSat subsystems:

- → Payload structure (3U Cubesat);
- Electronics and avionics (microprocessor, radio with duplex communication system, APRS tracking system, actuators);
- Boarding of scientific and technological payloads:
 - → Fault-tolerant embedded systems with reconfigurable self-healing hardware (in collaboration with KTH, SAAB)
 - → Multi-GNSS solutions (GPS, GLONASS, Galileo and BeiDou);
 - → Differential GLONASS;
 - → PNT based on carrier phase and code measurements;
- Unifying HAP and LAP experiments:
 - → Guidance system implementation;
 - → Impact point prediction;
 - → Ground station design and construction.

2015 UN Workshop on Applications of GNSS

Introductio

Brasília cit

The HeD

GLONAS station at UnB

Associated Research

Conclusion

Conclusions and Future Works

- The GLONASS SLR and OW station represents an excellent opportunity for the advancement of research on GNSS in Brazil, especially at UnB, and also improve the accuracy of PNT in the South America;
- This first year operating the SLR station was important for technical team training, adjustment of the station equipment, and providing a better understanding of the weather condition in our region and its impact on the operation of the station;
- Future perspectives include:
 - → study and evaluation of atmospheric error models in our region;
 - → GLONASS precise position;
 - → study of SBAS typical architecture and implementations;
 - → practical applications on HASP (LAICAnSat) and multipurpose autonomous rovers travelling (UE H2020).

2015 UN Workshop on Applications of GNSS

Introduction

Brasília cit

GLONAS: station at UnB

Associated Research

Conclusion

Thank You For Your Attention!

UnB, Brasília - Brazil OJC - RPC - PSI, Moscow - Russia

Acknowledgements:

AEB Brazilian Space Agency ROSCOSMOS Russian Space Agency

