Norwegian contributions to the ISWI program

Karl M. Laundal and Nikolai Østgaard
Birkeland Centre for Space Science
University in Bergen
Norway
University in Oslo

Instabilities and turbulence in polar ionosphere

Rocket programs:
ICI, CaNoRock

Cube STAR

Instrumentation development
University in Tromsø

EISCAT_3D
New generation of incoherent radar
3D information of ionospheric parameters

Tromsø Geophysical Observatory
Part of European Space Situational Awareness - SSA network
Birkeland Centre for Space Science

Norwegian centre of excellence
Four core research topics:

- Asymmetric geospace
- Dynamic ionosphere
- Energetic particle precipitation
- Terrestrial gamma ray flashes
A global model of ionospheric currents

- **Empirical model**, based on magnetic field measurements at low Earth orbit: *Swarm* and CHAMP.
- Includes total current, without any assumptions about conductivity
- No assumption of hemispheric symmetries
- Main field distortions accounted for
- Includes both polar and low latitude (Sq) currents
- Depends on solar wind coupling function, IMF orientation, dipole tilt angle, and F10.7 index
Potential space weather applications

Total current predictions
Total current obtained by combining Birkeland current and “equivalent” current. Critical quantity for Joule heating calculations.

Prediction of ground magnetic perturbations
Assuming a current height, we calculate ground magnetic perturbations and synthetic AE indices.
Total current

- Can be used to estimate Joule heating \(\mathbf{j} \cdot \mathbf{E} \), relevant for satellite drag predictions
- No assumption about conductivity
- Only possible with precise satellite measurements (Swarm + CHAMP)
Model ground perturbations

Thule (85°)

\[\Delta B_{\text{north}} \text{ [nT]} \]

\[\Delta B_{\text{east}} \text{ [nT]} \]

- data
- model

Model ground perturbations

Yellowknife (69°)

ΔB north [nT]

ΔB east [nT]

data model
Model ground perturbations

AE indices

Data vs Model

nT

Model ground perturbations

AE indices

- Data
- Model

nT

Dayside reconnection rate can be estimated by solar wind measurements.

Nightside reconnection rates are unknown.

On short time scales, they are uncorrelated, but on long time scales they are identical.

=> We can only model slow variations.
Summary - magnetic field/current model

- Unique features:
 - Includes the total/true horizontal current
 - Distortions by main magnetic field taken into account
 - Includes hemispheric asymmetries

- Potential space weather applications:
 - Improved satellite drag predictions
 - Predictions of low-frequency ground disturbances

- Model will be released for public use in ~1 year
 - Model coefficients