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• Historical Background:
– Effects of the March 1989 storm
– Solar wind & IMF coupling to Earth’s magnetosphere

• GRACE thermospheric density measurements during the November 2004Storm
– Clue #1 Similarities to polar cap potential and Sym H index

• Practical implications of J77 Model

• Application of First Law of Thermodynamics

• Energy responses when interplanetary drivers turns off
– Clue #2: Stormtime thermosphere acts like a driven-dissipative system

• Comparison of driven-dissipative model predictions with measurements.

• Predicting thermospheric responses with theDst index alone

• Summary and Conclusions
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Historical Background: 
Some Impacts of March 1989 Storm

Great Storm of March 13 - 14, 1989

• Cause: - CME launched on March 9, oblique impact on 13 March

• Effects: - Created a new radiation belt in 5 minutes after impact.
- Crippled Hydro Quebec for ~ 9 hours
- Caused US Space Surveillance  Network to lose ~3400                        

> 10 cm space objects it normally tracks.
- Collision avoidance capabilities lost

• Subsequently, radiation belt physics was better understood and 
electric grid vulnerability was addressed and mitigated.  

• Storm-induced tracking errors persist.



Historical Background:  Solar Wind/ IMF 
Coupling to Earth’s Magnetosphere

• Dessler-Parker-Sckopke Relation:   Dst directly proportional to the 
total energy of current-carrying particles in the magnetosphere

• Burton-Russell- McPherron Relation:
(driven dissipative system)

• Polar Cap Potential - IEF Relation

• Polar Cap Potential saturation during large storms
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GRACE Accelerometer Measurements 
during the November 2004 Storms
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GRACE satellites measured Thermospheric mass densities at 
~ 500 km, during July & November 2004 storms.

• MSIS and J-70 use Ap index as disturbance-time  
driver  but underestimated storm effects 

• Missed fine structure in GRACE measurements

• Predicted density increases 4 to 6 hours too late

• Clue #1:  ΦPC and - Sym H track centroids of 
GRACE density perturbation measurements.

• ACE data may predict thermospheric responses 0
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Practical Implications of  the J77 Model
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J77: Parametric Relations

Exospheric temperature T
∞

controls mass density profiles ρ(h) 
via quadratic relations

Bottom Line: Knowing mass density at a given attitude we can calculate T∞ ,
and through J77 tables, density, temperature and composition profiles 



J77: Total Energy of Stormtime Thermosphere
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• Thermal energy:

• Gravitational Energy
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Stormtime Thermosphere: A Driven-Dissipative System

- Plot natural log of Eth (J) and εVS(mV/m) for days 24 – 31 July 2004 
Eth represents the energy added to thermosphere above pre-storm levels

- Vertical lines mark rapid εVS decreases  
- Slanted lines show relaxation rate of ~6.5 hours  in Eth after εVS terminates 
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• Assume independent UV & SW sources: Eth = Eth UV + Eth SW

=>  driven-dissipative equation

• Solve numerically using 1-hour time steps

• Best fits: 
15

E   5.5  10  [(J/hr)/( / )]

 6.5 hrE

mV mα
τ

≈
≈

�

Clue # 2

Critical 
Conclusion



Driven-Dissipative System Applications 
to  July and November 2004 Storms
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Compare solutions of driven-dissipative equation predictions for ESW and Dst with GRACE 
and U. Kyoto databases using εVS from ACE during two storm periods. 

Maximum   T∞ SW ≈ 500° K



Predicting Stormtime Thermosphere Using 
Dst Driven-Dissipative Equation Alone
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• Observed (red dots) vs modeled (blue lines)
thermospheric energy ESW (top) and Dst index
(bottom) during November 2004 storms.

• εVS derived from hourly-averaged ACE data
acts as the driver for driven-dissipativeEth and
Dst equations.

• Since T∞ SW is directly proportional to ESW , both it 
and Dst obey driven-dissipative equations

• Combine equations, eliminate  εVS and use ∆t = 1hr 

τT ≈ 6.5 hrs,  τD ≈ 7.7 hrs and αT / αD ≈ 1.575.

• Approximate interplanetary and thermospheric 
conditions during March 1989 storm

Note maximum   T∞ SW ≈ 800° K
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Energetics of the Stormtime Thermosphere
Summary and Conclusions

• This presentation outlined results of a renewed attempt to address a space
weather effect encountered during the great magnetic storm of  March 1989 
when about 3400 tracked objects were lost.

• The critical new element underlying this advance was the availability of precise
thermospheric density measurements from the GRACE satellites during the
magnetic storms of the last solar cycle. 

• Stormtime GRACE data were viewed in the light of:
(1)  Established relations between the interplanetary electric field, the Dst index    

and the cross polar cap potential.
(2)  Information implicit in the Jacchia 1977 thermospheric model.

• Our analyses show globally-averaged exospheric temperatures (T∞), thermospheric 
energy (Eth) and Dst follow the equation for driven-dissipative systems.

• Eliminating εVS from the combined equations shows the evolution of the 
stormtime thermosphere can be determined using the Dst index alone.

An independent study found stormtime tracking errors reduced by 65%
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