

Future Infrastructure for Data-Intensive Science

David Schade Canadian Astronomy Data Centre National Research Council Canada & University of Victoria

November 22, 2017 Vienna

The UN recognizes that governments have invested hundreds of millions of dollars to create the presentday network of astronomy data services. The powerful science capabilities provided by this network are the foundation upon which Open Universe will operate.

These investments must continue and increase in order to support the types of services proposed by the Open Universe.

Fresh new ideas and approaches

- Few new ideas in the Open Universe initiative
- The new factor is the involvement of the UN

A fresh new approach would be:

A substantial transfer of the benefits of astronomy data and supporting infrastructure to the public through education, outreach, and citizen science with a focus on developing nations as the highest priority.

Scale of CADC 2016

CADC

- was created in 1996 and parallels Hubble Space Telescope
- has 21 staff: scientists, programmers, operations
- 1 billion files
- 2.6 Petabytes

Data flows

- 1.4 Petabytes of data out
 - 75 million individual calls
- 300 Terabytes put back into CADC system
 - 15 million calls

Processing

University of Victoria

• 3,671,737 jobs in batch mode

University of

British Columbia

- 387 interactive Virtual Machines
- 460 core years of processing used

CADC data delivery

The Future: Two Themes

Integration of data resources

- Integration within data centres
- Integration across data centres

Integration of data with computing infrastructure

- Integration within Canada
- Integration internationally

Canadian Astronomy Data Centre

Canadä

Telescope Data Products

Advanced Data Products

Services Documentation

cumentation Advanced Search

Login

CADC Home > Advanced Search

Advanced Search

Search Results Error ADQL Help

Search Reset

Integration of data from 115 instruments

MC-CMC Canada

TCHY

Click on 😢 for explanations

Observation Constraints		Spatial Constraints		Temporal Constraints		Spectral Constraints	
Observation ID P.I. Name Proposal ID Proposal Title Proposal Keywords Data Release Date	8 8 8 8	Target Pixel Scale Do Spatial Cutout	9 9	Observation Date Integration Time Time Span	9 9 9	Spectral Coverage Spectral Sampling Resolving Power Bandpass Width Rest-frame Energy Do Spectral Cutout	9 9 9 9
Science and Calibration data	-						

Additional Constraints								
Band	Collection	Instrument	Filter	Calibration Level	Data Type	Observation Type		
All (7) Gamma-ray Infrared Millimeter Optical Radio UV Unknown	All (21) CFHT CFHTMEGAPIPE CFHTTERAPIX CFHTWIRWOLF HST HSTHLA GEMINI JCMT JCMTLS DAO DAOPLATES	All (115) ACS Apogee USB/Net COS CPAPIR Cassegrain Spectrograph Cassegrain Spectropolarime Direct image ESPaDONS F2 FTS2-SCUBA-2 Fabry image	All (2152) 0.35MB 0.35um 0.45MB 0.45um 0.75um 0.85um 1.083 um 1.210 um 1.282 um 1.3um 1.4um	All (5) (3) Product (2) Calibrated (1) Raw Standard (0) Raw Instrumental Unknown	All (6) catalog cube image Other spectrum timeseries	All (57) ACQUIRE ALIGN ARC ASTAR BIAS CAL CALIB COMPARISON DARK DIM DOME_FLAT		

ESASKY

ESDC » ESASky » ESASky Help

ESASKY HELP

University of British Columbia canarie 🐲

The second

International Data Integration

NRC·CNRC

Two Themes

Integration of data with computing infrastructure

- Integration within Canada
- Integration internationally

Driven by:

- Large data volumes
- Government funding policy
- Science practice

Past practice

CADC operates an integrated system of resources

- A cloud ecosystem for data intensive astronomy
- User services
 - Store and share data
 - Create and configure VMs
 - Run interactive VMs
 - Run persistent VMs
 - Batch processing with VMs
- Using research cloud resources
 - Compute Canada

University of

British Columbia

- CADC
- Integrated authentication and authorization

canarie

comp

Past practice

CADC's role has changed radically

We were:

Managers/curators/distributors of data collections

We are now:

 Managers of an an integrated system of services for data-intensive astronomy

Canadian distributed astronomy platform

Shared international platform

Why INTERNATIONAL shared computing platforms?

Science practice is international

Reciprocity

- for data
- for computing infrastructure
- For services supporting data-intensive science

The Open Universe (whatever it turns out to be)

Open Universe

will be based on

IVOA standards

that support the operation of

Astronomy Data Centres

that are integrated into

Open Science Clouds

This new infrastructure creates opportunities for those who have limited access to resources

- Equalizes access for professional scientists in developing countries
- Provides new capabilities for teachers and the public

Example: Graduate student in Bangladesh

The UN recognizes that governments have invested hundreds of millions of dollars to create the presentday network of astronomy data services. The powerful science capabilities provided by this network are the foundation upon which Open Universe will operate.

These investments must continue and increase in order to support the types of services proposed by the Open Universe.

Fresh new ideas and approach

- Few new ideas in the Open Universe initiative
- The new factor is the involvement of the UN

A fresh new approach would be:

A substantial transfer of the benefits of astronomy data and supporting infrastructure to the public through education, outreach, and citizen science with a focus on developing nations as the highest priority.

