United Nations / Pakistan / Prince Sultan Bin Abdulaziz International Prize for Water - 4th International Conference on the Use of Space Technology for Water Management
Islamabad

Lorenz Wendt, Stefan Lang, Dirk Tiede, Martin Sudmanns, Barbara Riedler

Tools and Services for the Humanitarian Community for Groundwater Exploration and Water Management
Who is Z_GIS?

Interfaculty Department of Geoinformatics – Z_GIS

- Quality of Life and Smart Mobility
- Environment and Resource Efficiency
- Risk and Social Vulnerability
- Humanitarian Action and Human Security
Mission:
Provide Earth-Observation based geospatial information products to humanitarian actors

Constraints:
- Difficult security situation on the ground
 - Limited time frame
- Limited knowledge about region
- Decision makers are not experts

What can remote sensing do to help?
(it should be the perfect tool, right?)
Mission:
Provide Earth-Observation based geospatial information products to humanitarian actors
Mission:
Provide Earth-Observation based geospatial information products to humanitarian actors

25 countries, 350+ maps provided since 2011

Mostly population maps of refugee camps and settlements; also towns, landcover
Information products related to water to support:

- groundwater exploration
- Installation /construction of infrastructure
- Water management

Always key issue:

We can’t see everything from above. Integration of existing information, field knowledge and remote sensing analysis is essential.
EO-based services for water: Groundwater exploration

Digital Elevation Model → Satellite Imagery → Satellite-derived geological map → Hydrogeological Reconnaissance Map → Road network

available geological maps + Expert evaluation

SEE NEXT TALK BY GERAINT BURROWS, GROUNDWATER RELIEF!
EO-based services for water: Installation of Infrastructure

- Nepal: Reconstruction of water pipelines in Lapilang, Nepal
- Cooperation with Austrian Red Cross

Where is the water needed?

→ Mapping of buildings in VHR images + local survey
Where to place communal water taps?
Requirements: Maximum distance 150 m horizontal, 50 m vertical

→ DEM from Spot 6 (2 m spatial resolution), spatial analysis
EO-based services for water:
Installation of Infrastructure

Where to place communal water taps?

Requirements:
- Maximum distance: 150 m horizontal, 50 m vertical

- DEM from Spot 6 (2 m spatial resolution), spatial analysis
EO-based services for water: Installation of Infrastructure

Where to build the pipelines from springs to taps?

→ DEM from Spot 6 (2 m spatial resolution), longitudinal sections
EO-based services for water: Installation of Infrastructure

Where to place communal water taps? Requirements: Maximum distance 150 m horizontal, 50 m vertical.

DEM from Spot 6 (2 m spatial resolution), spatial analysis.
EO-based services for water: Installation of Infrastructure

Are the sources safe against pollution?

→ Land use/land cover mapping of catchment areas
EO-based services for water: Installation of Infrastructure

Road and buildings (stables/toilets?) only 50 m upstream of source
Development of tools
(generic, but applicable to water)
Multi-purpose technology to exploit Big Earth Data: Applications for Water Management

1. Optical satellite image data and associated fully automatic data derived information layers
 - Data-derived EO Level 2 categorical and semantic variable at time T-x
 = Scene classification map (SCM)
 - Data-derived EO Level 2 numeric variable(s) at time T-x, e.g., class-conditional spectral index(es)

2. Array database system storing images and image derived products for fast querying

3. Semantic content-based queries through time and space in user defined AOIs by a graphics inference engine

Service architecture

Application independent re-usable Big EO data approach

Situation (conflict/crisis) specific domain expert based indicator extraction through time

1. Pre-classifications
 Fully automatic, data-derived geospatial information layers

2. Array-DBMS (Database Management System)
 - Storage using array model
 - Multidimensional array as data model. Each cell can contain one or more values.
 - Declarative query language (Slicing, Dicing, Aggregation, ...).
 - Tiling supports range queries, optimised physical data access.

3. Graphical inference engine
 - Spatiotemporal Semantic Queries / Information extraction through time
 - Graphical User Interface

 World-knowledge transfer
 from humans to the machine
 Knowledge engineer, Human domain expert

Answer (OGC conform georeferenced analysis products as input for additional integrated analyses, data integration and/or cartographic map production)
Application example: Mapping of irrigated agriculture, border region Turkey- Syria

- Comparison August 2010 – August 2014
- Relevant for water management
- The **generic approach** to extract such indicators allows repetition **on-the fly** for different time intervals

Application example: Ex-post flood extent mapping in Somalia, from Big Earth Data

- The example is based on a dense temporal stack of 78 Landsat 8 scenes
- Generic approach
- Optimized database use → very little time of operator needed

Humanitarian Services at Z_GIS:

EO-based information services, proven and available on short notice

New services

Collection and development of innovative technologies and applications

User needs
Let's be a little bit provocative:

Remote sensing for water:
Should make life easier, but requires (at the moment) experts and/or field data for calculation of:
- Precipitation
- Evapotranspiration
- Run-off modelling
- Infiltration and permeability
- Storage of volumes in lakes...

Solutions?

1. Tools become really simple and clear
2. We team up.
 Lorenz.wendt@sbg.ac.at