

APPLICATION OF GEOSPATIAL TECHNOLOGIES FOR EXPLORATION OF GROUNDWATER IN THAR DESERT

Presented by:

Muhammad Badar Munir

Assistant Manager

Pakistan Space & Upper Atmosphere Research Commission

4th United Nations / Pakistan International Conference on the use of Space Technology for Water Management, Islamabad, Pakistan

- Background
- Objectives
- Scope
- Study Area
- Methodology
- Results
- Conclusion

- Thar Desert, densely populated desert in the world, forms the extreme southeastern part of Pakistan covering about 30,000 Km²
- Population of Thar mainly depends on limited agriculture and livestock
- In the absence of surface perennial water and fluctuating rainfall in the region, it is important to explore possibilities of sustainable water resources
- Hunting for alternative water resources and its provision will drastically improve socio economic conditions of the region
- Project Management Office, Sindh Barrages Rehabilitation Project approached SUPARCO for development of GIS as envisioned under this project

Study Area

- Agriculture solely dependent on rainwater
- Average rainfall significant but inconsistent
- Recurrent drought cycles
- Four zones division, depending upon physiographic features, drainage directions etc.

Application of geo-spatial technologies to narrow down potential areas for groundwater for further field investigations

- Preparation of satellite image Landcover classification maps
- Analysis of Digital Elevation Model (DEM) to determine drainage and natural gradients
- Development and analysis of resistivity data in GIS
- Submission of report based on remote sensing and GIS data

Methodology

Incorporating RTK Survey Data into GIS

Landuse / Landcover Classification

Legend	&	Sta	tis	tic
--------	---	-----	-----	-----

	Provincial Boundary	High Resolution Satellite Imag Blow-up Footorints	
	Land Cover	Area (Km²)	Area (%)
	Agricultural Land	116.50	4.05
	Migrating Sand Dunes	2	12
	Interdunal Plains	÷	12
	Hill Outcrop	9	12
988) 1999	Salt Marsh	2	12
1	Sand Dunes with Shrubs	2726.23	94.82
	Settlements	0.333	0.012
	Trees	2	L.
	Water Bodies	32.15	1.12

Note:- About 95% area of Zone-1 consists of Sand Dunes with Shrubs. Agriculture is practiced over 4% of the area. Another peculiar feature of the Zone-1 is water bodies that consists of around 1% of the total area of Zone-1. Blow-ups of high resolution satellite imagery are shown to give an insight of the landcover classes particularly water bodies. Water bodies are important feature because these originally disjoint water bodies are artificially connected with each other to support agriculture.

Landuse / Landcover Classification

4.2

Legend & Statistics					
 Provincial Boundary	High Resolution Satellite Image Blow-up Footprints				
Land Cover	Area (Km²)	Area (%)			
Agricultural Land	9561	42.3			
Migrating Sand Dunes	10	0.04			
Interdunal Plains	582	2.58			
 Hill Outcrop	153	0.68			
Salt Marsh	993	4.4			
Sand Dunes with Shrubs	10535	46.6			
Settlements	318	1.4			
Trees	293	1.3			
Water Bodies	160	0.7			

Note:- Zone-4 is comparatively the largest populous area of the Thar Desert. Agriculture is practiced over 42% of the area and is the major source of living. A limited number of Migrating Sand Duhes exist in the Zone. A significant number of areas with deep rooted trees are observable. Most of the water bodies exist at the southern border of the kone. There is abundance of Salt Marsh area in the zone as compared to other zones. Hill Outcrop is the peculiar feature of the zone present around Nagarparkar. Based on deep rooted trees and other favorable landuse, potential groundwater areas have been identified.

Incorporating Resistivity Survey Data

Resistivity Surface Map - 60 m Depth **Resistivity Surface Map – 80 m Depth** Zone 2 Zone 2 Zone 3 Zone 3 INDIA INDIA SINDH SINDH Inces In P Zone 4 Zone 4 Tar Dos R ANN OF китсн NN OF китсн A EVER 144 69'40'0"E Legend Legend International Boundary International Boundary 76 - 100 ity Surface at 60m Der 110 - 150 SUPARCO SUPARCO 160 - 500 Map Projection: GCS_WGS_84 Map Projection: GCS_WGS_84 Resistivity Survey Data Source: Project Management Office, Sindh Barrages Rehabilitation Project Irrigation Department, GoS Resistivity Survey Data Source: Project Management Office, Sindh Barrages Rehabilitation Project Irrigation Department, GoS 51 - 75

Slide 12 of 20

Resistivity based Inferred Potential Areas

Properties / Parameters	Standard Values for	WHO Guidelines	Remarks
	Pakistan		
Total hardness as CaCO ₃	< 500 mg/l		
TDS	< 1000	< 1000	
рН	6.5 – 8.5	6.5 – 8.5	
Arsenic (As)	< 0.05 (P)	0.01	Standard for Pakistan
			similar to most Asian
			developing countries
Chloride (Cl)	<250 mg/l	<250 mg/l	
Fluoride (F)	<1.5 mg/l	<1.5 mg/l	
Nitrate (NO ₃)	<50 mg/l	<50 mg/l	

Incorporating Geophysical Survey Data

Slide 15 of 20

Incorporating Geophysical Survey Data

Slide 16 of 20

Incorporating Geophysical Survey Data

LST Maps

Inferred Potential Groundwater Areas

- The study demonstrates potential of the applications of geospatial techniques in groundwater prospection
- A total of 20 bore holes have been quarried within boundaries of potential groundwater zones
- Sweet groundwater was found in 19 out of 20 bore holes

Thank You