Symposium Introduction

OVERVIEW OF SMALL SATELLITE INITIATIVES AT THE BRAZILIAN SPACE AGENCY

Rodrigo Leonardi
Brazilian Space Agency

@ United Nations/Brazil Symposium on Basic Space Technology
Creating Novel Opportunities with Small Satellite Space Missions
Natal, September 2018
1) Summary of Brazilian past small satellite missions

2) Small satellite initiatives (by mass category):
 i. Mini ~500kg
 ii. Micro ~100kg
 iii. Nano ~1-10kg

3) Brazilian community & Stakeholders

4) STEM & Community/Public Outreach

5) Final remarks
SUMMARY OF BRAZILIAN SMALL SATELLITE MISSIONS

e.g. UN REGISTER OF OBJECTS LAUNCHED INTO OUTER SPACE

By generic function
- Scientific, 2 (5%)
- Educational, 1 (3%)
- R&D, 6 (15%)
- Communications, 23 (57%)
- Earth observation, 8 (20%)

Mass > 500 kg
Mass ≤ 500 kg (12/40)

Year

R. Leonardi | United Nations/Brazil Symposium on Basic Space Technology | September 2018 | Natal | Brazil | 3/19
SUMMARY OF BRAZILIAN SMALL SATELLITE MISSIONS

Brazilian objects under 500kg

<table>
<thead>
<tr>
<th>Object</th>
<th>Year</th>
<th>Launch vehicle</th>
<th>Status</th>
<th>Organization</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tancredo-1</td>
<td>2017</td>
<td>H-2B</td>
<td>End of operation</td>
<td>Escola Tancredo Neves / AEB</td>
<td>0.7</td>
</tr>
<tr>
<td>SERPENS</td>
<td>2015</td>
<td>H-2B</td>
<td>End of operation</td>
<td>UnB / AEB</td>
<td>4</td>
</tr>
<tr>
<td>AESP 14</td>
<td>2015</td>
<td>Falcon 9</td>
<td>Satellite failure</td>
<td>ITA / INPE / AEB</td>
<td>1</td>
</tr>
<tr>
<td>NANOSATC BR1</td>
<td>2014</td>
<td>Dnepr</td>
<td>Operational</td>
<td>INPE / UFSM / AEB</td>
<td>1</td>
</tr>
<tr>
<td>UNOSAT</td>
<td>2003</td>
<td>VLS</td>
<td>Launch failure</td>
<td>UNOPAR</td>
<td>9</td>
</tr>
<tr>
<td>SATEC</td>
<td>2003</td>
<td>VLS</td>
<td>Launch failure</td>
<td>INPE</td>
<td>65</td>
</tr>
<tr>
<td>SACI 2</td>
<td>1999</td>
<td>VLS</td>
<td>Launch failure</td>
<td>INPE</td>
<td>80</td>
</tr>
<tr>
<td>SACI 1</td>
<td>1999</td>
<td>Long March</td>
<td>Satellite failure</td>
<td>INPE</td>
<td>60</td>
</tr>
<tr>
<td>SCD 2</td>
<td>1998</td>
<td>Pegasus</td>
<td>Operational</td>
<td>INPE</td>
<td>117</td>
</tr>
<tr>
<td>SCD 2A</td>
<td>1997</td>
<td>VLS</td>
<td>Launch failure</td>
<td>INPE</td>
<td>115</td>
</tr>
<tr>
<td>SCD 1</td>
<td>1993</td>
<td>Pegasus</td>
<td>Operational</td>
<td>INPE</td>
<td>115</td>
</tr>
<tr>
<td>DOVE-Oscar17</td>
<td>1990</td>
<td>Ariane</td>
<td>End of operation</td>
<td>Eng. Torres de Castro</td>
<td>13</td>
</tr>
</tbody>
</table>
AEB SMALL SATELLITES INITIATIVES: MASS CATEGORY ~500kg

Brazilian Multi Mission Platform (PMM) for small (and medium-sized) satellites

Amazon-1 satellite: multi-mission Platform (service module, bottom) and payload module (top). The closing panels are separated to illustrate the internal layout of equipment and subsystems. The solar panel is shown in its launch configuration.
AEB SMALL SATELLITES INITIATIVES: MASS CATEGORY ~100kg

EQUARS (EQUatorial Atmosphere Research Satellite)

Investigate the formation of ionosphere bubbles, a phenomenon that can interfere in various technological activities, mainly in the areas of telecommunications and navigation by satellites.

Five scientific payloads:
- Airglow photometer
- Electrostatic Energy Analyzer
- Monitor of Alpha, Proton and Electron fluXes
- GPS Radio Occultation Measurement
- Ionospheric sensor set

PPR review planned for late 2018
LAUNCHED CUBESATS:
LATIN AMERICA & THE CARIBBEAN

Argentina
CubeBug-1, civ, 2U, 2013
CubeBug-2, civ, 2U, 2013

Peru
PUCP-SAT 1, uni, 1U, 2013
UAPSat, uni, 1U, 2014
Chasquini 1, uni, 1U, 2014

Chile
SUCHAI, uni, 1U, 2017

Uruguay
ANTELSAT, uni, 2U, 2014

Colombia
Libertad 1, uni, 1U, 2007

Equador
NEE 01, civ, 1U, 2013
NEE 02, civ, 1U, 2013
UTE-UESOR, uni, 1U, 2017

Puerto Rico
QBUS 4, uni, 2U, 2017

Brasil
NanosatC-BR1, civ, 1U, 2014
AESP-14, uni, 1U, 2015
Serpens, civ, 3U, 2015

R. Leonardi | United Nations/Brazil Symposium on Basic Space Technology | September 2018 | Natal | Brazil | 7/19

Members of the Committee on the Peaceful Uses of Outer Space

*Ecuador/Russia, UTE-YuZGU

16 objects
Last updated: August 2018
AEB SMALL SATELLITES INITIATIVES: MASS CATEGORY ~1-10kg

NanosatC-BR1 is the 1st Brazilian CubeSat launched. Developed by INPE in collaboration with UFSM and AEB support.

Launched on June, 2014 By DNEPR from Russia (as a tertiary payload by ISIS)

The payload instruments of the NanosatC-Br 1 consists of magnetometer to measure the intensity of the Earth Magnetic Field at the South Atlantic Magnetic Anomaly (SAMA) region and on the Brazilian sector of the Ionosphere Equatorial Electrojet (EEJ) A particle precipitation chip dosimeter

CURRENT STATUS

Today, the NANOSATC-BR1 can transmit only when it is in sight of the Sun (The battery can no longer hold electric charge because it was damaged by magnetic solar storms in September-October 2014). The World Amateur Radio Network is currently providing NCBR1 data.
AEB SMALL SATELLITES INITIATIVES:
MASS CATEGORY ~1-10kg

AESP-14

The main objective of the mission was to validate in space a namosat developed by students.

Didn’t work as it should due to a problem with a transmission antenna.
AEB SMALL SATELLITES INITIATIVES:
MASS CATEGORY ~1-10kg

Human Resources training: Focused on system engineering at undergraduate level. There is no technology development on each mission the focus is on the hands on experience of satellite and mission design.

Flight opportunity for technology and scientific payloads: The SERPENS satellite offer the flight opportunity for scientific and technological payloads that are available during the mission time provided that mission team agrees in including the payload.

University autonomy: Each SERPENS mission is coordinated by one of the Brazilian Aerospace universities. The students and professors compose the core acting as the mission's prime contractor and design organization. Nonetheless other institutions can be involved provided the coordinating university so desires.

Serpens 1: Data Collection tech demonstrator.

Spinoffs and Technology: NanoRaven, Antenna Deployment System, Brazilian 3U structure.
AEB SMALL SATELLITES INITIATIVES: MASS CATEGORY ~1-10kg

ITASAT, a 6U Cubesat ready for launch

Payload: Camera, GPS, transponder for data collection, radio amateur
The NanoSatC-Br2 is a 2U cubesat aiming to target capacity building and science and R&D.

The platform flight software was developed in Brazil, by Researchers and Engineers from CRS/CCR/INPE/MCTIC and LACESM/CT – UFSM, already working in this area (Determination & Attitude Control and Data Management).

The Control Law for the control software has also been developed in Brazil.

The Project received support from AEB to hire the launch and future operation of NCBR2 in orbit.

Now the NCBR2 is planned to be launched early 2019.
AEB SMALL SATELLITES INITIATIVES: MASS CATEGORY ~1-10kg

• Ongoing effort to sign an Implementing Arrangement between NASA, AEB, INPE and ITA to establish the cooperation terms for the SPORT mission. SPORT is a cubesat that will study the preconditions leading to equatorial plasma bubbles in the ionosphere.

• Discussing with UFSC the upcoming Serpens 2.

• Discussing with China scenarios for launching Brazilian cubesats as a secondary payload on Long March.

• Supporting academic research and development on plasma propulsion technology for nanosatellites.

• Following third party initiatives (e.g. VCub1 Visiona/Senai/Embrapii, FloripaSat UFSC, Conasat INPE, Garatéa-L Consortium, Cubesat Grupo Criar, CGEE prospective studies, INPE Cubesat for X-ray astronomy, Air Force Carponis proposal, PLUS a few more projects).

• Engaging in high level space related committee (CDPEB).
Strategic importance of small satellites for Brazil
BRAZILIAN COMMUNITY & STAKEHOLDERS

Brazilian Cubesat/Nanosat Network: 253 professionals @ CNPq Lattes
(50% PhD, 24% Master, 23% Grad Student, 3% Undergrad)

Universities, Institutes, Government, Private Sector

Word cloud of community work and production
STEM & COMMUNITY/PUBLIC OUTREACH

AEB is offering space related curriculum choices to schools and students to improve competitiveness in Science, Technology, Engineering, and Mathematics (STEM) disciplines.

AEB Courtesy Image

Tancredo 1 (UbatubaSat)

Tancredo PicoSat Team Courtesy Image

CVT-E
Brazilian Space-Tech Vocational Center, CLBI, Natal
Gonçalves & Gurgel Veras, 54th AIAA Aerospace Sciences Meeting, 2016
United Nations/Brazil Symposium on Basic Space Technology
"Creating Novel Opportunities with Small Satellite Space Missions"

NATAL, BRAZIL, 11 - 14 SEPTEMBER 2018
Co-organized by the United Nations Office for Outer Space Affairs and the Government of Brazil

UNNATI (UNispace Nanosatellite Assembly & Training by ISRO)
NASA International Internship (NASA I²) Program

Regional Centre for Space Science and Technology Education for Latin America and the Caribbean (CRECTEALC)
FINAL REMARKS

• Consolidate in Brazil the small satellite segment
 • ~500kg
 • ~100kg
 • ~1-10kg

• Identify small missions to attend qualified demands

• Promote synergies with Brazilian launch vehicle development effort

• Continuous human resources training

• Welcome new stakeholders (industry, startup, think-thank, etc)

• Incentivate sustainable bussines model for the segment (services, applications, innovation)

• Promote international partnerships
THANK YOU FOR YOUR ATTENTION

Rodrigo Leonardi
Brazilian Space Agency

rodrigo.leonardi@aeb.gov.br