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1. Introduction
The µSAT-3 is a 30Kg microsatellite developed by the Argentine Air Force. Its Power Plant is
composed by four modules: energy generation and storage, battery management, power regulation,
and distribution and protection. The present work describes the photovoltaic system, the battery
system, and the module which controls the charging process.
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Fig. 1 – Block diagram of µSAT-3’s Energy Power System.

2. Required Energy Estimation
In order to estimate the required energy by the µSAT-3, two operation sequences are proposed:
taking pictures during the entire sunlit period of the orbit, and downloading data with the S-band
transmitter, and taking pictures except during the satellite pass (Fig. 2).
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Fig. 2 – Power and energy consumption during one complete µSAT-3’s orbit, for image acquisition (upper)
and data transmission and image acquisition (lower) operation sequences. The maximum computed power
is 50,6W, the average power is 25,8W, and the maximum current (@10,5V) is 4,8A.

The required energy for both types of operation sequences is 42,3Wh. This means that the batteries
must deliver 126,9Wh (63,45Wh per battery) in three consecutive orbits (useful passes over the
ground station).

3. Photovoltaic System
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Fig. 3 – I vs. V and P vs. V curves simulated at 1365 W/m2 of two
µSAT-3’s panels oriented in dihedral position to the Sun [1].

4. Charge Protocol and Battery Design
The µSAT-3 has twin Li-ion batteries composed by a s-p cell ar-
ray: three cells in series in order to reach 12V on the UREG bus,
and the parallel number is determined by the energy estimation
(Fig. 2).
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Fig. 4 – Typical charge curve of a Li-ion cell for CC/CV protocol.

Charge/Discharge Protocol Design:
Constant current stage @4, 4A.
Constant voltage stage @4, 1V/cell→ SoC ≈ 80%.
Charge termination: when charge current drops to 0,01C.
Minimum discharge voltage: 3, 5V → DoD ≈ 80%.
Charge and discharge rate < 1C.
(Percentage of usable energy: 60%) [2], [3].

Battery Design:
Nominal energy = (63, 45Wh× 100) /60 = 106Wh
N◦ of cells = ETbat/Ecell = 106Wh/5, 4Wh⇒ 21 cells
Configuration: 3s× 7p
Battery capacity = 1, 5Ah× 7p = 10, 5Ah
Battery energy = 5, 4Wh× 21 cells = 113, 4Wh
Battery mass = 42g × 21 cells = 882g
Maximum charge rate (Figure 3): 4, 4A→ 0, 419C.
Maximum discharge rate (Figure 2): 4, 8A→ 0, 459C.
Charge termination current: 100mA.

5. Battery Charge Regulator (BCR)
The Battery Charge Regulator is a standalone unit, which regulates the voltage in order to charge
the batteries keeping the ripple smaller than 1%.
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Fig. 5 – Schematic diagram of the Battery Charge Regulator.

Fig. 6 – Ripple (left) and ringing spikes (right) measured in the BCR prototype. The obtained ripple is
10mVpp (0,08%) and the ringing spikes are 15mVpp (0,12%).

6. Battery Charge Manager (BCM)
In addition to the BCR, the designed battery charge protocol
is executed by the BCM, which consist on a comparator that
triggers digital signals according to the batteries voltage, and a
logic unit that controls the driver unit to switch the batteries
(when a battery is in service, the other is putting to charge).
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Fig. 7 – Schematic diagram of the Battery Charge Manager.

7. Conclusions
The general criteria was to design a simple, robust and durable system, with an autonomous
functioning and no requirement of a microcontroller. In this sense, the battery cycling miss out
the 40% of the total available energy in order to prolong its life cycle as long as possible. Besides,
it is not necessary to include a current limiter module because the current capacity of the solar
array does not exceed 4,5A (equivalent to 0,5C of each battery). In relation to the BCR circuit, the
obtained results are as expected, but it can still be improved: the temperature reached during the
test at maximum current was too high. Then, in order to improve the safety margin it is suggested
to use another buck converter which presents a lesser RDS(on) and tolerates higher currents. To
conclude, it is important to highlight that exhaustive tests to the system in a complete, joint
working state are pending.
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