

Big Data and Digital Augmentation for Sustainable Agri-Food Systems

Spatial innovations for ecologically sustainable and economically viable solutions

Chandrashekhar Biradar, PhD

Head-Geoinformatics Units Principal Scientist (Agro-Ecosystems)

May 5-10, 2019 Cluj-Napoca, Romania

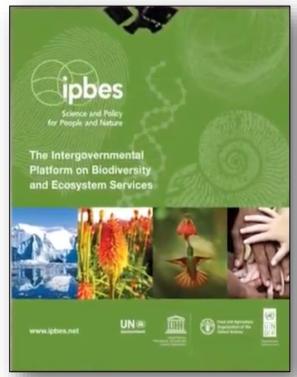
geoagro.icarda.org

Platform for Big Data in Agriculture

cgiar.org **CGIAR**

icarda.org

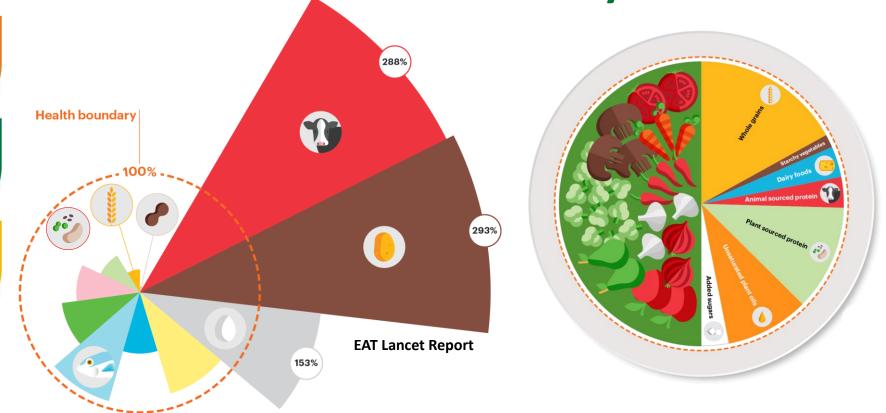
A CGIAR Research Center


Food, Fiber, Packing > Problems

"the way people eat today is often unhealthy for them and for the planet" - Kate Brauman

The unhealthy food is single largest source of problems in todays world.

"We can become healthier as an individuals by eating more diverse diets, with more vegetables, and we can also make the planet healthier by growing food that in more sustainable

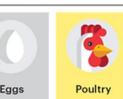

- UN Report 2019 Released May 6, 2019

We must restore nature and drive innovation.
Only then will we leave future generations a healthy and sustainable planet. - Jonathan Baillie, National Geographic Society.

icarda.org

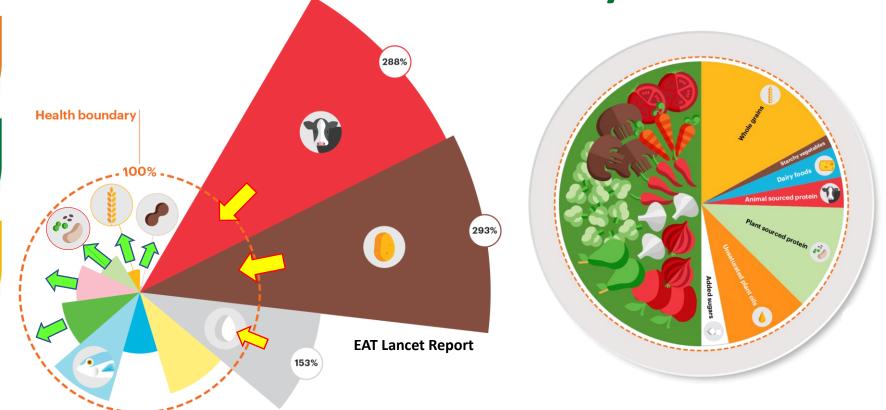
Current Diets vs Planetary Health

Moving from narrow sense economic benefit to a new ecologically sound functional system for well being...

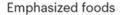




Limited intake



Optional foods



Current Diets vs Planetary Health

...with diversified cropping systems, conservation, rotation, nutrition focus >> "more health per acre"

Limited intake

Optional foods

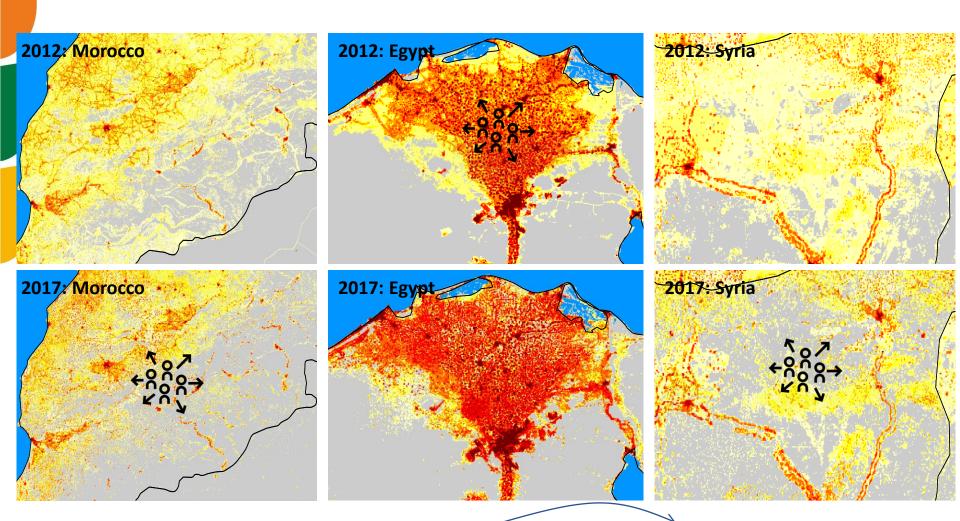
Changing diet pattern >> cropping systems >> Sustainable living

Sustainable alternatives for future food systems

Pulses for the people and planet

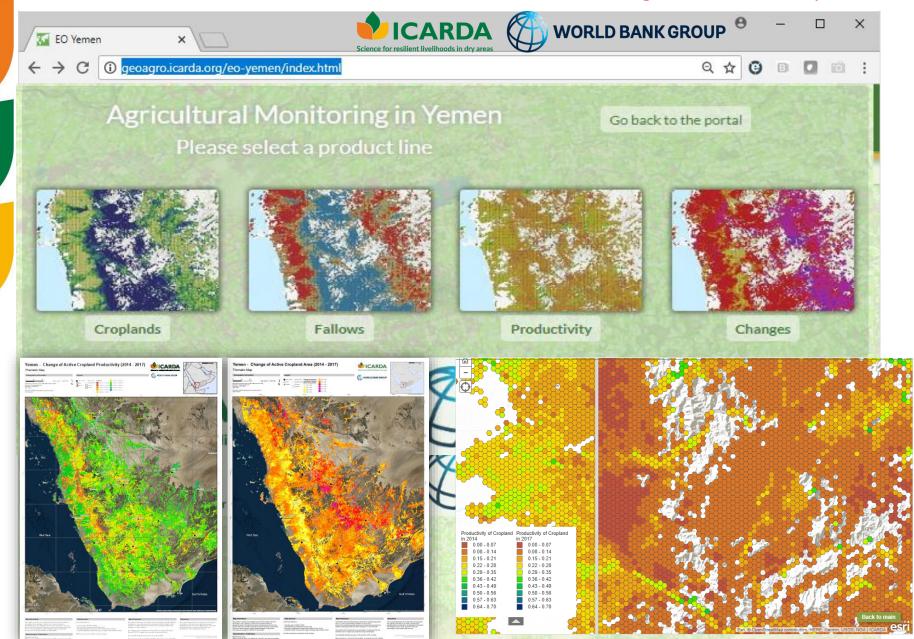
Daal/Falafal Chicken
Water used 1,250 liters 4,325

Mutton 5,520

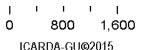

Beef 13,000

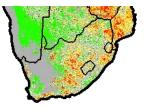
There is a need for paradigm shift from more calories per acre to more health per acre.

Changing diets, demography and agri-food systems


>> need better understanding the nexus between food, water, energy, economy and health

Key factors: the way we eat, we grow, we live


Increasing land degradation and fragile ecosystems

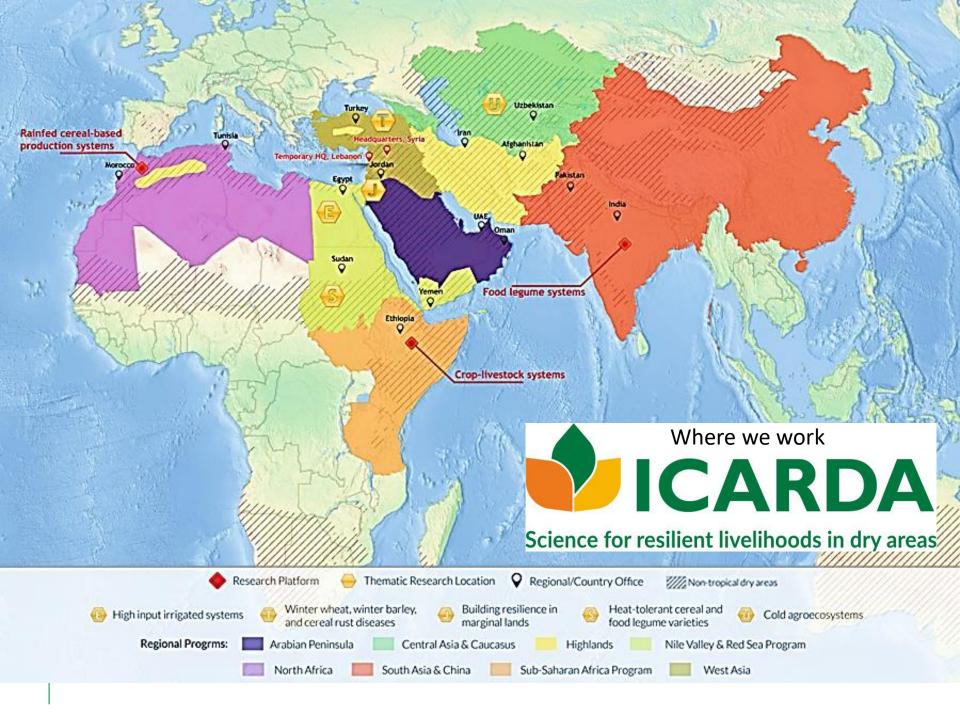

>>need monitoring them for development

Impact on the land use change and planetary health

>> land use pattern, water balance and climate building healthy food systems and rebuilding living soils

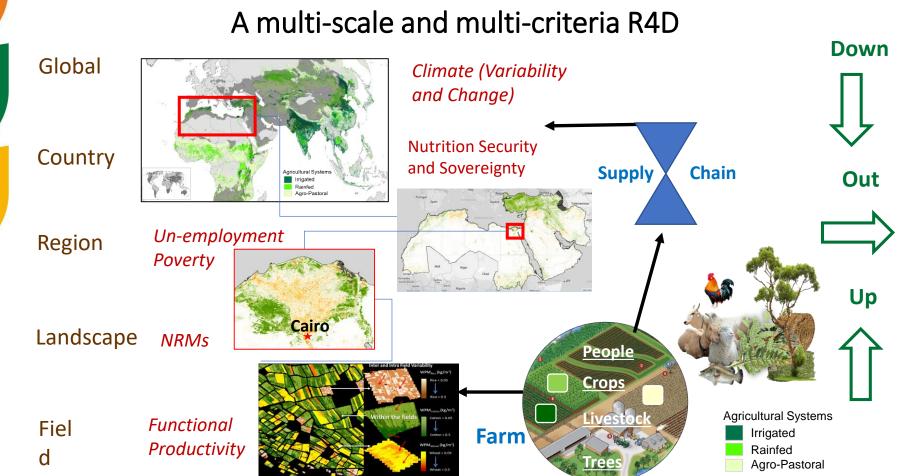
- Large fluctuation in water balance
 - Climate variability and extreme events
 - Dominance of mono-cropping / few commodity focus
 - Depleted soil organic carbon

Data driven decisions for diversified systems


>> with farm focus (rural welfare)

Geo Big Data for building inclusive agroecosystems for ecologically sustainable and economically viable options for more food, nutrition and health

Ecological intensification
Target specific interventions
Bridging the gaps
Inputs use efficiency
Agricultural policy
Halt degradation
Technology scaling


- food and nutritional security
- resilience and risk reduction
- agro-ecosystem sustainability
- adaption and mitigation
- citizen science and collective actions
- Equitable trade and social security

Integrated Agroecosystems combining Component

Research & Systems Research

New 9: 5 SRPs + 4 CCTs

Strategic Research Priorities

Adoption of the SRPs in operational projects

Genetic Resources: Mipi ersity to develop germplasm resistant to heat, drought, cold, disease, bi tional public goods (open access)

Adaption to Climate

breeding to develop climate-smart cr

Conventional and molecular

Building resilience: Ir economic, social, and environmental

Big **Data**

ivestock farming systems to address

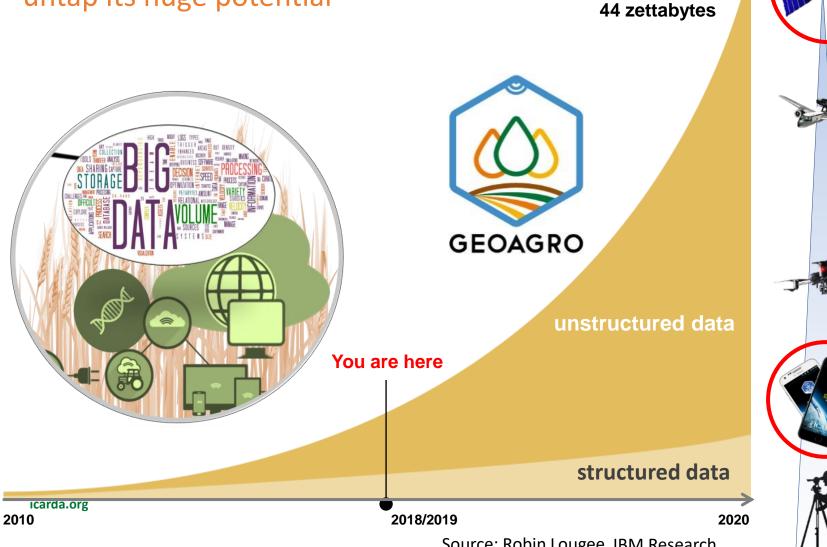
Promoting value cha

generating business for many poor sr

ICTs

CIES: Agriculture as an income-

eholds


Enhancing water, ic. **AVITY:** Rainfed, irrigated, and

agro-pastoral farming; Reversal of environ degradation; Enhance intensification

icarda.org

Data growing exponentially

>> it demands new technical and strategic approaches untap its huge potential



Source: Robin Lougee IBM Research

Earth Observation>> BIG DATA >>> Smart decisions... **Pastures Energy** Hydrology **River Flow** Weather Drought Agriculture **Forestry Floods** Inclusively integrated_ **Horticulture Groundwater** Water use Communication

New era of analytics

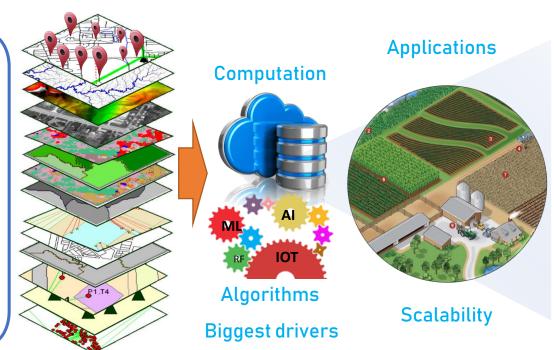
Conscious **Systems** Era

Local intelligence **Cognitive Systems** Era

Data driven

Tabulating Systems Era 👍

Programmable Systems Era


icarda.org

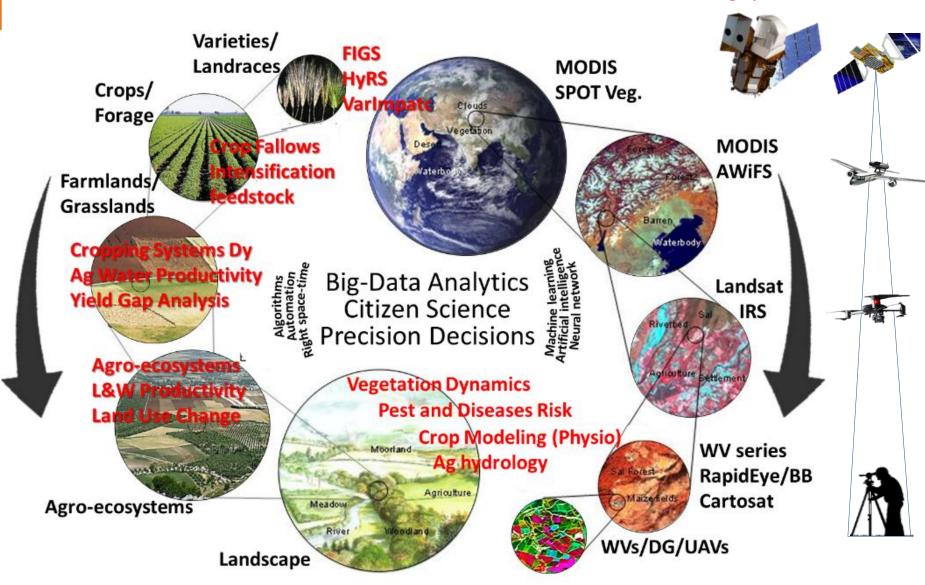
Digital Augmentation

Combining Big Data Science and Citizen Science to accelerate diversified intensification

Data Layers

Geo-Tagging
research & outreach data
Satellite data
Crop data
Climate data
Soil data
Water data
Topography
Demography
Ecological data
...

Mapping
Monitoring
Targeting
Estimating
Forecasting
Warning
Lending
Insurance
Value chains
Carbon-Credit

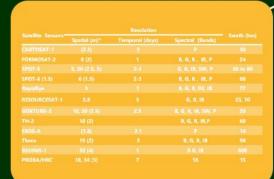


Geo-taging and Agro-tagging

Cross-cutting disciplines and trade offs

Role of Earth Observation to overcome the limitation and gaps

Earth Observation Systems for Agro-Ecosystem Research


ACTIVE SATELLITE SENSORS AND CHARACTERSTICS

Very High Resolution (Up to - 1 m)

Satellite Sensors**	Resolution			
	Spatial (m)*	Temporal (days)	Spectral (Bands)	Swath (km)
GEOEYE-1	1.65 (0.41)	1	B, G, R, IR, P	15.2
IKONOS	3.2 (0.82)	14	B, G, R, IR, P	11.3
PLEIADES-1A	2 (0.5)		B, G, R, IR, P	
PLEIADES-18	3 (0.5)		B, G, R, IR, P	20
Quick Bird	2.4 (0.6)		8, G, R, (R, P	
WorldView-1	(0.4)	1.2		17.6
WorldView-2	1.8 (0.4)		P, C, B, G, Y, R, RE, IR (2)	16.4
CARTOSAT-2				9.6
CARTOSAT-2a				
CARTOSAT-28				9.6
SKYSAT-1	2 (0.9)	<1 (hourly)	B, G, R, IR, P	
KOMPSAT-3	2.8 (0.7)	14	B, G, R, IR, P	16.8
KOMPSAT-2			B, G, R, IR, P	
OrbView-3	4 (1)	3	B, G, R, IR, P	-14

High Resolution (1 to 5 m)

Medium resolution (5 - 30 m)

Satellite	Multispectral resolution (m)	B, s	Swath width (km
ASTER (15m)			
VNIR (Visible Near Infrared)	15	VIR (4)	60
SWIR (Shortwave Infrared)		SW (6)	
TIR (Thermal Infrared)	60	TIR (5)	60
CBERS - 2			
WFI	260	R. IR	890
CCD		B, G, R, IR	
IRMSS	(2.7)	P-	27
LANDSAT STM -7ETM	30 (14.8)	B, G, R, IR, SW1, TIR, SW2, P	
Nigeriasat-X	22	G, R, IR	
Resourcesat-2/Liss-III		R, G, IR, SW	141
Deimos-1	22	G, R, IR	600
UK-DMC-2/SLIM6		6, R, IR	638
BILSAT-1	26 (12)	R, B, G, IR, P	640
Nigeriasat-1		G, R, IR	640
ALSAT-1	32	G, R, IR	640
UK-DMC/EC (DMC)	32	G, R, IR	600
EO-1/ALI-MS	30	B (2), G, R, IR (3), SW (2), P	
EO-1/ Hyperion	30	220 bands	7,7
ASTER (15m)	15, 30, 90	G, R, IR (2) SW(6), TIR (4)	60
LANDSAT 7ETM+	30m (14.5)	8, G, R, IR, SW (2), TIR, P	185
SPOT-4	20 (10)	G, R, IR, SW, P	60
SPOT-3	20 (10)	G, R, IR+P	60
JERS-1	24 (18)	G, R, IR, IR	75
SPOT-2	20 (10)	G, R, IR	60
SPOT-1	20 (10)	G, R, IR	60
Landsat 5/MSS	80	G, R, IR, IR	185
Landsat 5/TM	30, 120	B, G, R, IR, SW, SW, TIR	185
RESURS-01-1	45	G, R, IR	600

Low or Medium resolution

Satellite	Multispectral resolution (m)	8, s	(km)
	30 (14.8)	P, C, B, G, R, IR, SW (3)	
	375, 750		
MERIS			
GER8	40000		
SPOTS/VEGETATION 2		8, R, IR, SW (4)	
SPOT4/VEGETATION 1		8, R, IR, SW (4)	
Orbview-2/ SeaWiFS		B(2), G (3), IR (8)	2800
RESURS-01-1/ MSU-S		G, R, IR (3)	600
ResourceSat/AWiFS		R, G, IR, SW	
Londsat 2/ RBV		G, R, IR	
Landsat 1/ RBV		G, R, IR	

Radar Satellites

Satellite	Bands	Band (Polarity)	Swath width (km)
Sentinul-1			
COSMO-SKYMED 4	1, 5, 15, 30, 100	X-B (HH, VV, HV, VH)	10, 40, 30, 100, 200
COSMO_SKYMED 2	1, 5, 15, 30, 100	X-B (HH, VV, HV, VH)	10, 40, 30, 100, 200
RADARSAT 2	3, 8, 12, 18, 25, 30, 40, 50 100	C-B (HH, HV, VH, VV)	5 - 500
COSMO-SKYMED 1	1, 5, 15, 30, 100	X-8 (HH, VV, HV, VH)	10, 40, 30, 100, 200
Terra SAR-X	1, 3, 16	X-B (HH, VV, HV, VH)	1500
ALOS (PALSAR)	10, 20, 30, 100	L-B (HH, VV, HH, HV, VH)	
RADARSAT 1 (SAR)	8,25, 30, 35, 50, 100	C-B (HH)	50 - 500
ERS 1 (AMI)		C-B (VV)	100

^{*=}Resolution in parenthesis is panchromatic

Technologies are mature to make better decisions

>> but need strong, committed and collective actions to see the results

Thousands of research and outreach data points in each season across the agro-ecosystems

Open source near real-time earth observation data at field, farm and landscape scales

Enormous power of cloud computing, open access, algorithms and analytics to process data on time

Smart phone enabled apps and cloud web-GIS for decision making at point, farm and administrative units

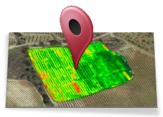
AWS Google Earth Engine

Paradigm shift towards economically viable ecologically sustainable options

1. Functional productivity

2. Yield & Rotation

3. Crop growth


4. Incentives

resilient agroecosystems

Evolving areas in Geo Big Data Science for building inclusive Agroecosystems

Financial inclusion Better livelihoods

Farm Focus

Pixel/Farm/Parcel A single entity for each & every developmental entry point

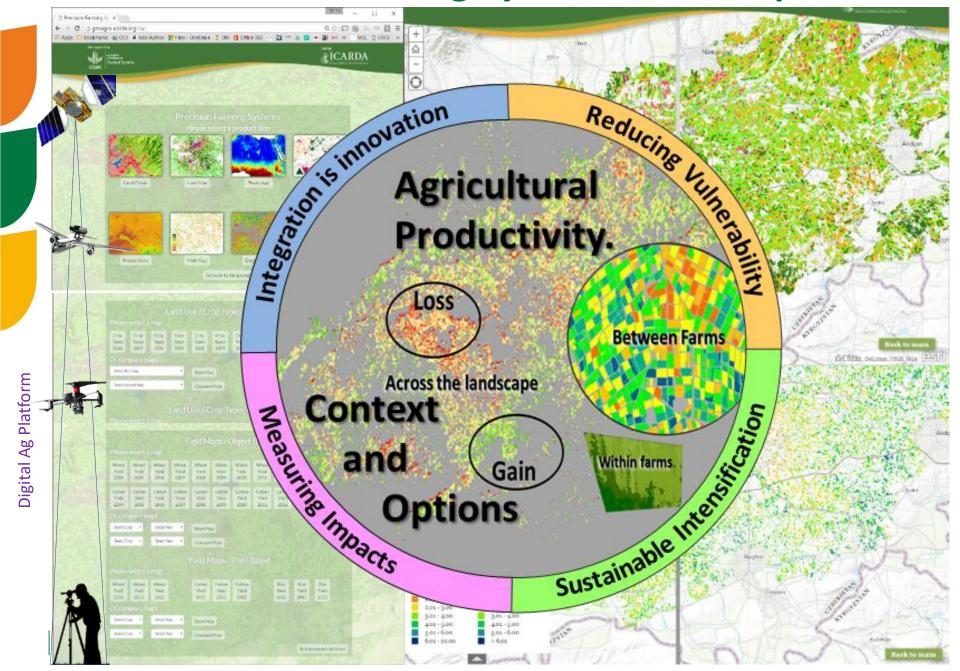
Ecological intensification Right crop at right place and time

Resilient cropping systems

better integration of crops, livestock, fish, trees & people

3 days revisit 30m⁴ Open source

1.0m


Agreements

0.3m

Optimizing resource use by integrated approach compound intensification in cereal based systems

<Biggest drivers

Quantification of Farming Systems @ multiple-scales

Quantifying the Dynamics of rice crops

Gosain Bundh SFMIS-moved

Jamdigri-moved

Jamdigri 11 BATCH SchemeName Jamdigri District BANKURA Block **JOYPUR** Scheme_Typ MDTW Village Mo Jamdigri Lat 23.07006 Long 87.47454 PhysicalPr 100 **HODate** November 6, 2015

Directions: To here - From here

Pakurseni LDTW

Pakurseni LDTW			
FID	115		
BATCH	2		
SchemeName	Pakurseni LDTW		
District	PASCHIM MIDNAPORE		
Block	NARAYANGARH		
Scheme_Typ	TW		
Village_Mo	Pakurseni		
Lat	22.19834		
Long	87.44147		
PhysicalPr	100		
HODate	July 18, 2016		

Directions: To here - From here

Hariharpur

Hariharpur			
FID	40		
BATCH	1		
SchemeName	Hariharpur		
District	PASCHIM MIDNAPORE		
Block	SABANG		
Scheme_Typ	Mini(E) RLI		
Village_Mo	Hariharpur		
Lat	22.138147		
Long	87.630084		
PhysicalPr	100		
HODate	March 23, 2015		

Directions: To here - From here

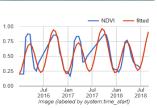
Kalisara LDTW

Nalisa	I a LUIVV
FID	24
BATCH	1
SchemeName	Kalisara LDTW
District	BIRBHUM
Block	MAYURESWAR I
Scheme_Typ	LDTW
Village_Mo	Kalisara
Lat	24.05688
Long	87.84444
PhysicalPr	100
HODate	June 29, 2016

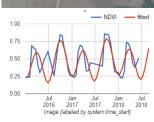
Directions: To here - From here

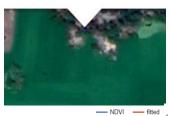
Kundra - IV PDW

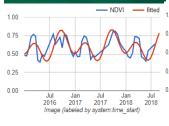
Tunio	
FID	294
BATCH	3
SchemeName	e Kundra - IV PDW
District	BIRBHUM
Block	RAJNAGAR
Scheme_Typ	PDW
Village_Mo	Kundra
Lat	23.965694
Long	87.356806
PhysicalPr	100
HODate	November 14, 2017

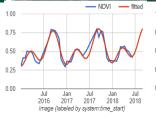

Kundra - IV PDW

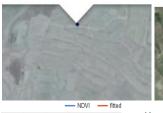
Directions: To here - From here

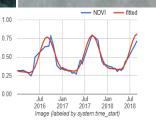

	Gosain	Gosain Bundh SFMIS		
	FID	71		
	BATCH	2		
	SchemeName	Gosain Bundh SFMIS		
	District	PURULIA		
	Block	KASHIPUR		
	Scheme_Typ	SFMIS(40ha)		
	Village_Mo	Uluberia		
	Lat	23.477367		
	Long	86.790317		
	PhysicalPr	100		
7	HODate	September 10,		

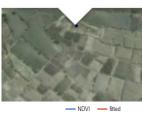

Directions: To here - From here

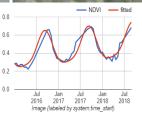


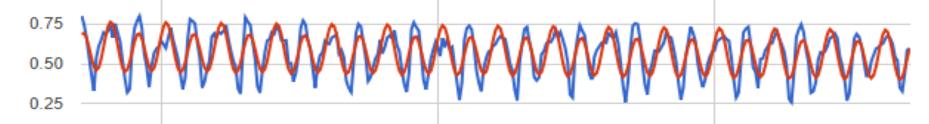


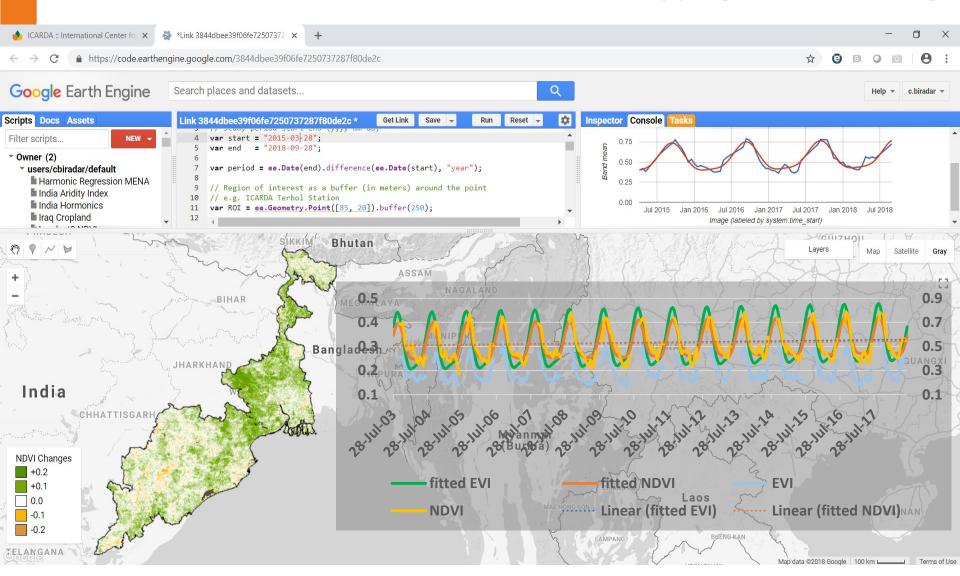




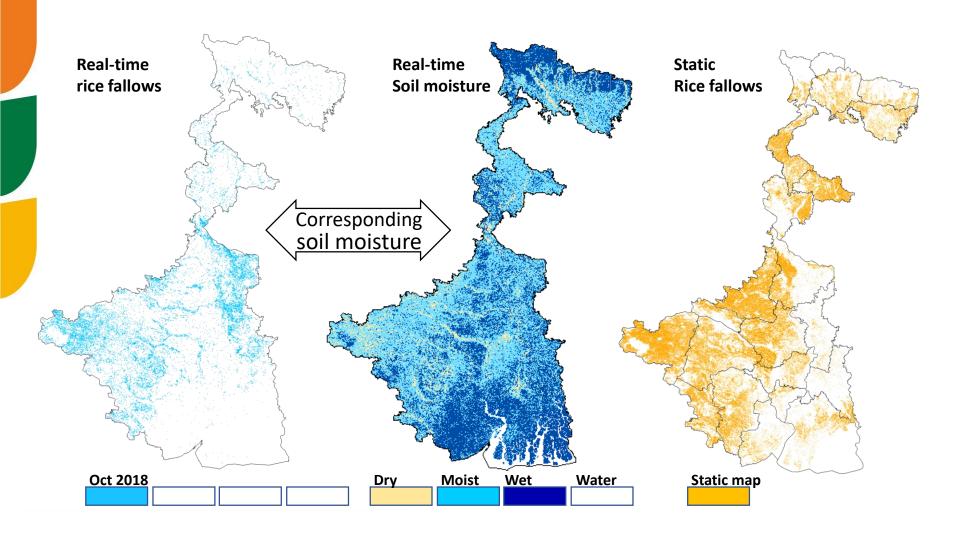




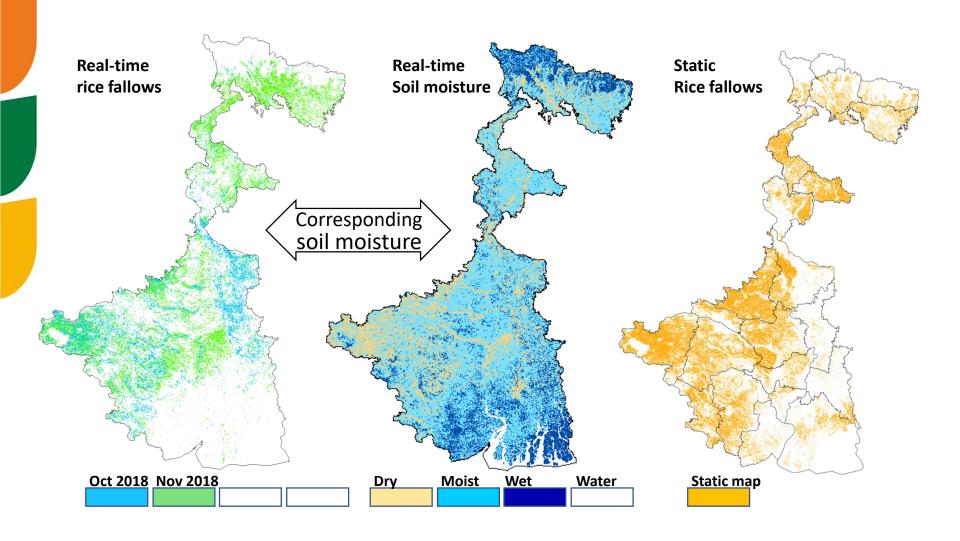


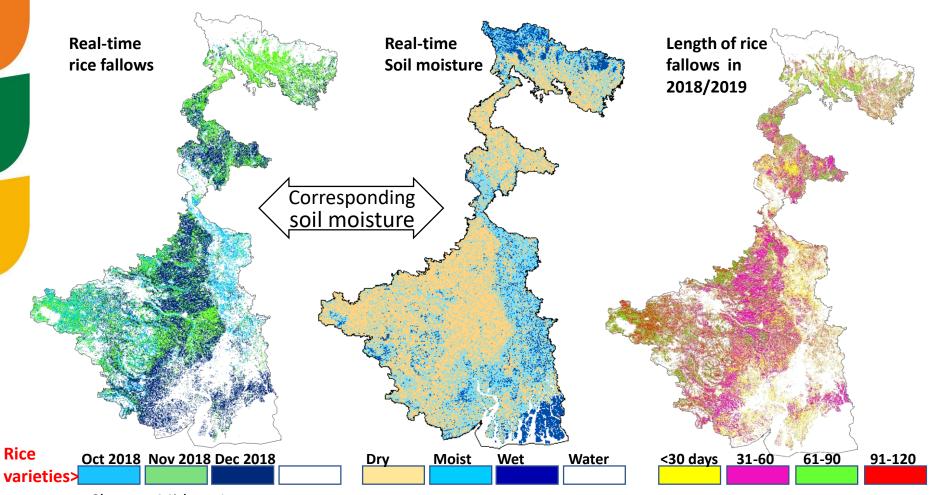

Fallows in Double cropped area

Fallows in Single cropped area

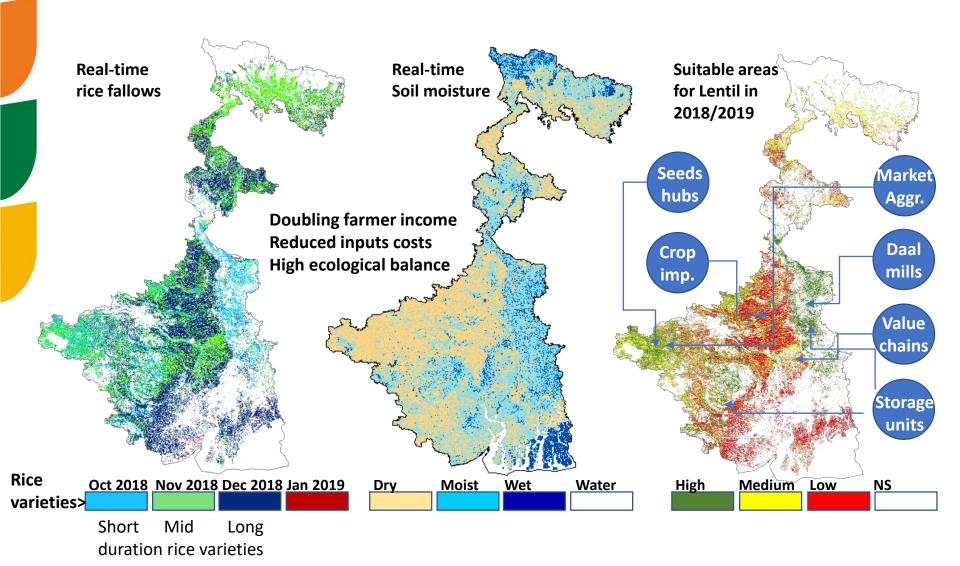


Timely Tracking for precision decisions


>> near real-time mapping and monitoring


Real-time monitoring to target site specific interventions (package of practices)

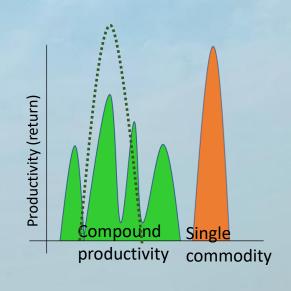
Real-time monitoring to target site specific interventions (package of practices)



Real-time monitoring to target site specific interventions (package of practices)

Short Mid Long duration rice varieties

Real-time monitoring to target site specific interventions (package of practices)



Small farms field the world: food grown in small farms are more healthy, tasty, nutritious and it helps rebuilding living soils and resilient agroecosystems

Dry to Green

- Rice fallow under pulses
- Increased income (2-3 times)
- Increased resource use efficiency
- Rebuilding healthy soil and biota
- Better nutrition and health
- Addressing 8 of the 17 SDGs

Way forward

- Agri-food systems is single largest user of land and water resources and is also single strangest lever to achieves SDGs (everything is linked to 'healthy food')
- Location specific analytics required to close the GAPS* to achieve "more health per acre"- which need collective and coordinated efforts;
- Recent advances in Earth Observation, Open-Access,
 Machine Learning, Cloud Computing, Smartphone, and
 Citizen Science making Big-Data analytics much smarter,
 interoperable and useful ever before for making
 spatially informed precision decisions.
- Data driven multiscale informatics are required to build "inclusive agroecosystems" for growing food sustainable way for better world

Production follows functions

Lets leverage technology to rebuild functional agri-food systems to achieve UN SDGs for All

Vasudhaiva Kutumbakam "the world is one family".

Thank You

c.biradar@cgiar.org

Chandrashekhar Biradar, PhD Principal Scientist (Agro-Ecosystems) ICARDA Head-Geoinformatics Units

> icarda.org geoagro.icarda.org