Water Footprinting and other Agricultural SaaS Solutions

Bertil Abbing Head of UK Sustainability Analysts

is an end-to-end environmental software-as-aservice (SaaS) provider that is recognized as one of the world's top Sustainability brands.

We have unrivalled experience in helping businesses and governments identify risks and opportunities by combining satellite earth observation data with local information and business intelligence on the award-winning Ecometrica Platform.

Ecometrica brings together recognized experts in environmental and sustainability accounting, and our software supports all aspects of sustainability planning, operations and reporting.

Our data and software services are available worldwide through our offices in London, Boston, Edinburgh and Montreal.

- Benefits of SaaS
- Waterfoot Printing
- Land Use and Land Use Change (LULUC)
- Soil Moisture Change
- Water Risk and Drought Vulnerability

Benefits of SaaS

- No tedious spreadsheet calculations
- Increased accuracy
- Accessibility
- Cloud based No software installation
- Automatic updates on a timely basis
- Increased data analysis and results
- No maintenance cost
- No capital expenses

Bertil Abbing – Ecometrica Jil Bournazel – Ecometrica Prof. Mathew Williams – University of Edinburgh Darren Slevin PhD – University of Edinburgh Fraser MacDonald – The Data Lab

Water footprinting Methodology

The Water Footprint Assessment Manual (Hoekstra A.Y., et al. 2011) Grey Water Footprint Accounting (Franke N.A., et al. 2013)

What is a water footprint?

The water footprint measures the amount of water used to produce each of the goods and services we use. It can be measured for a single process, such as growing rice, for a product, such as a pair of jeans, for the fuel we put in our car, or for an entire multi-national company. The water footprint can also tell us how much water is being consumed by a particular country – or globally – in a specific river basin or from an aquifer. *Source: http://waterfootprint.org*

Water footprinting **Calculations**

WF proc, green = GreenWaterEvaporation + GreenWaterIncorporation [volume/time] CWU_{green} [wolume/mass]

TTTT

$$WF_{proc,green} = \frac{green}{Y} \quad [volume/mass]$$
$$CWU_{green} = 10 \times \sum_{d=1}^{lgp} ET_{green} \quad [volume/area]$$

*WF*_{proc,blue} = *BlueWaterEvaporation* + *BlueWaterIncorporation* + *LostReturnflow* [volume/time]

$$WF_{proc,blue} = \frac{CWU_{blue}}{Y} \quad [volume/mass]$$
$$CWU_{blue} = 10 \times \sum_{d=1}^{lgp} ET_{blue} \quad [volume/area]$$

Green and Blue water footprint

Green and Blue water consumption are mapped based on the available climate and rainfall models as well as models determining the required amount of water to grow a certain crop.

- Modelling Evapotranspiration (ET) (ET = WFGreen)
- Evaluate model at regional & global scales
 - Data sets used: FLUXNET-MTE, GLEAM, MODIS
- Precipitation maps
- WFBlue = ETmax yield Precipitation

$$WF_{proc,grey} = \frac{L}{c_{max} - c_{nat}}$$

[volume/time]

$$WF_{proc,grey} = \frac{(\alpha \times AR)/(c_{max} - c_{nat})}{Y}$$

[volume/mass]

Grey water factors

α

Category	/	Factor	Pesticide	Metal	Nitrogen	Phosphorus	Data collection
Chemical properties		Contaminant factor					
		K _{oc} (L/kg)	v				User/Database
		Contaminant factor					
		K _d (L/kg)		v			User/Databas
		Persistence half					
		time (leaching)	v				User/Databas
		Persistence half					
		time (run-off)	v				User/Databas
	Atmospheric	N-deposition			V		Mapping
		Texture leaching	٧	٧	V		Mapping
	Soil	Texture run-off	v		V	٧	Mapping
		Erosion potential		٧		٧	Mapping
		Natural drainage					
Environ		(leaching)			V		Mapping
mental		Natural drainage					
factors		(run-off)			V		Mapping
Jucco/5		Organic Matter					
		content					Mapping
		P-content				٧	Mapping
	Climate	Rain Intensity	v			٧	Mapping
		Precipitation (mm)	٧		V		Mapping
		Management					
		practice			V	V	User
		Artificial drainage					
		(run-off)		V			Mapping
Agricultu	iral practice	Application rate					
		(kg/ha)			V	V	User
		Plant uptake (crop					
		yield)	ا ا		V	V	User
		N-fixation (kg/ha)			v		User

Grey water footprint

Grey water consumption is calculated based on mapped and submitted impact factors and the Grey Water Model by Franke et al. (2013)

- GWF=(α*Appl)/(Cmax-Cnat)
 - α Grey water factors weighted intensity
 - Appl Application of chemical user
 - c_{max} Maximal contamination maps
 - c_{nat} Natural contamination maps

Grey water is the amount of water necessary to assimilate contaminated water (A.Y. Hoekstra, 2012)

Göttingen area - Germany

ermany Demo ~

Total Grey Water Footprint (L) 32 978.0 Breakdown of the Grey Water Footprint:	
Breakdown of the Grev Water Footprint:	
Pesticide GWF 28 661.3 6 Nitrogen GWF 6.2 0 Phosphorus 217.3 217.3	GWF
Fertiliser GWF:	
Cd GWF 388.9 Cu GWF 2 650.0 915.0	Mn GWF 139.4

75.0 m3.tonne-1

Results

Description Details

The Green Water Footprint is the consumed rainfall required for agriculture (here for growing winter wheat).

The green component of crop water use was simulated by a crop model (ACM-GPP-ET model**) for Europe at 0.5 degrees resolution. The actual evapotranspiration (ET), which is the sum of the water evaporated from the soil or crop surface and transpired from crops (i.e. the water required for crop growth), was measured for each month over Europe for winter wheat. Finally this Green Water Footprint dataset (m3.tonne-1) was calculated as actual ET (im m3.h=1) divided by the crop yield (dnone.h=1).

This Green Water Footprint data was one of the products developed by the University of Edinburgh as part of the Global Water Footprint pilot study funded by the DataLab, in partnership with Ecometrica.

**ACMET-GPP-ET model: Aggregated Canopy Model-Gross Primary Productivity-Evapotranspiration version 1

-0.5 m3.tonne-1

The Blue Water Footprint corresponds to the surface and groundwater sources used for irrigation for agriculture (here for growing winter wheat).

Water deficits in crop production are usually solved by increasing irrigation (i.e. adding Blue Water). On global scales, green vater use is ~4 to 5 times greater than blue vater use. The blue component of crop water use was simulated by a crop model (ACM-GPP-ET model**) for Europe at 0.5 degrees resolution. The actual evapotranspiration (ET), which is the sum of the vater evaporated from the soil or crop surface and transpired from crops (i.e. the vater required for crop growth), was measured for aceh month over Europe for winter whetat. This Blue Water Footprint dataset was calculated by subtracting the actual ET (which is limited by the amount of available water) from the potential ET (maximum ET if there is no water limitation).

This Blue Water Footprint data was one of the product developed by the University of Edinburgh as part of the Global Water Footprint pilot study funded by the DataLab, in partnership with Ecometrica.

**ACMET-GPP-ET model: Aggregated Canopy Model-Gross Primary Productivity-Evapotranspiration version 1

Calculating emissions from Land Use and Land Use Change (LULUC)

Intergovernmental Panel on Climate Change Or 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4

Agriculture, Forestry and Other Land Use Edited by Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngarand Kiyoto Tanabe

IPCC National Greenhouse Gas Inventories Programme

GES

United Nations Climate Change

Why calculate emissions from land use and land use change?

- Reporting requirement for countries obligated to submit a National Greenhouse Gas Inventory (Annex I party to the UNFCCC)
- LCA of land-based products (e.g. biofuels, crops, meat)
- Understand impact of deforestation and other primary vegetation loss

Current calculation method

- Guidance, methods, calculation steps and default emission factors provided in Volume 4 (AFOLU) of the IPCC guidelines
- Considers (i) changes in carbon stock in biomass, dead wood, litter and soils
 (ii) GHG emissions due to land management activities (fire, fertiliser, livestock, flooding)
- Requires background reading and understanding, multiple worksheets and complicated calculation steps
- Specific emission factors may need time consuming research

LULUC Analysis Steps on the Ecometrica Platform

Step 1: Add a 'test' area with available sequential land use maps to the Ecometrica platform (Marques de Comillas, Chiapas, Mexico)

Step 2: Perform additional analysis to re-classify original datasets into the 6 IPCC categories (Forest Land, Cropland, Grassland, Wetlands, Settlements, Other Land)

Step 3: Determine the areas of land covered by each category, and land areas converted from one category to another between two periods

Step 4: Input the area data to the calculation steps

Step 5: Select appropriate activities which will automatically select the proper emissions factors (IPCC defaults and regionally specific factors)

Step 6: Calculate emissions automatically on the platform according to the IPCC Volume 4 (AFOLU)

Step 7: Display results on the Ecometrica platform

ecometrica	LULUC Test	Select the IPCC land conversion category		
015 - Marques de Comillas	Status: Data Entry - 6/7 completed			
Cropland remaining cropland				
Cropland remaining cropland 4/4	Mineral soil carbon stock (reporting year) Please select the soil type, land use and tillage regime from the drop down list and enter the area	rea of land in this rates on during the reporting year		
orest land remaining forest land 2/2				
and converted to cropland 0/1	nin Seclude Question			
	Mineral soil carbon stock (inital/reference year) 😝 Editin Admin			
	Please select the soil type, land use and tillage regime from the drop down list and enter the area year.	ea of land in this category during the initial/reference		
Questions relating to	Add Answer S Exclude Question			
relevant changes in		Above ground biomass - carbon loss due to wood removal 🖂 ? Edit in Admin		
carbon stock for that	Above ground biomass - carbon loss due to harvesting 📧 🖬	Please select the type of forest from the drop down list and enter the area that has been harvested during t		
	Please select the type of land use from the drop down list and enter the area of land that falls wit the reporting year.	Wood removal from humid 678 Cubic Metre Jan 1, 2015 - Dec 31, 2015		
category are added	Add Answer S Exclude Question	tropical natural forest (g.s.81-120m3)		
	Above ground biomass - carbon sequestration from growth 🛛 Editin Admin	nin Unanswered		
	Please select the type of land use from the drop down list and enter the area of land that falls wit use (during the reporting year) compared to the initial land use of the reference year.	within this cat Activity*		
		Wood removal from humid tropical natural forest (g.s.<10m3)		
	Add Answer S Exclude Question	Wood removal from humid tropical natural forest (g.s.21-40m3)		
	ione (activition) available	Wood removal from humid tropical natural forest (g.s.41-60m3) Wood removal from humid tropical natural forest (g.s.61-80m3)		
	ions 'activities' available	Wood removal from humid tropical natural forest (g.s.81-120m3)		
under each o	question, each activity links t	to Wood removal from humid tropical natural forest (g.s.120-200m3)		
a geographic	cally relevant emission factor	Wood removal from humid tropical natural forest (g.s.>200m3)		

Marques de Comillas

Lavers Areas • Description Results Details Land Use Change Area [ha] 117 CC (cropland remaining cropland) 928.744865 WW (wetland remaining wetland) 1 979.858618 s Américas Cooperativa GG (grassland remaining grassland) 7 177.266342 Aario Méndez SS (settlements raiming settlements) 2 226.783238 Veremos Complejos LN (land converted to forest: cropland to natural veg.) 1 233.368263 VII APSP 307 LC (land converted to cropland: grassland to cropland) 1 608.844267 Pico de Oro LG (land converted to grassland: cropland to grassland) 2 591.802242 oledad NN (remaining natural veg.) 8 275,669595 Margues de Comillas × et. LC (land converted to cropland: natural veg. to 1 070.378493 Description cropland) Results Details Tierra Blanca Flor de Cacao LW (land converted to wetland: cropland to wetland) 210.115981 **Arroyo** Delicias Nuevo Orizaba 307 LG (land converted to grassland: natural veg. to 548.225640 grassland)

Forest land remaining forest land » Above ground biomass - carbon loss due to wood removal

× 2015	Scope 1	Wood removal from humid tropical natural forest (g.	: 81-120m3)	678 m3	Non-Extrapolated	Chiapas
co₂						
Coefficient			Value	Unit	u	ncertainty
Data Value			678	m3		±5%
	80-120 m3 Mexico	i removal, humid tropical, natural forest, growing derived from IPCC 2006 & FCPF 2016 x 1, 2000	-3527.04	kgCO ₂ /n	n3	±50%
Total			-2,391,333	kgCO ₅		±50.2%
	æ		GWP		tCOs	tCOve
GWP Source						

Total Emissions	
GWP Source	tCOve
Fifth Assessment Report (without climate feedback)	0

Forest land remaining forest land * Above ground biomass - carbon sequestration from growth (forest land)

nswer Date	Scope	Activity	Value	Frequency	Location
2015	Scope 1	Tropical moist deciduous forest (natural)	4,535 ha	Non-Extrapolated	Chiapas
CO:					
Coefficient			Value	Unit	Uncertainty
Data Value			4,535	ha	±5%
Tropical moist deciduous forest (natural), biomass carbon stock increase derived from IPCC 2006 & PCPF 2016			10559.9999999999998	kgCO ₂ /ha	±50%
Locations: Me	oico				
Factor Dates:	From Jan. 1, 2	000			
Total			47,229,600	kgCO;	±50.2%
GWP Source			GWP	tCOs	tCOve
Eith Arrange	ant Deport Ju	ithout climate feedback)	1	47.890	47,890

Calculations happen automatically

Carbon sequestration, loss and net change shown for all categories

Assessment Results . 2015 Assessment . Results . LULUC Test

Sustainability - Trends & Targets Downloads & Data

Carbon sequestered : 439,146 tCO₂e Carbon lost: 972,035 tCO₂e Net overall carbon stock change: -532,889 tCO₂e

Geographic Summary by Question

GHG -

Summary by Question Group

Summary by Scope

Results

Soil Moisture Change

https://soil-moisture.rothamsted-ac.ourecosystem.com/interface/

Precipitation Projections

Results Description Details

· Projected Percent Change in Monthly Precipitation

The following graphs present the percent change in precipitation for 2050 (average of 2021-2040) and 2070 (average of 2061-2080) with reference to the baseline period 1960-1990 under two representative concentration pathways (RCPs).

RCP4.5 is an intermediate-emissions scenario, consistent with a future with relatively ambitious emissions reductions and GHG emissions increasing slightly before starting to decline around 2040.

RCP8.5 is the high-emissions scenario, consistent with a future with no policy changes to reduce emissions, and characterized by increasing GHG emissions that lead to high atmospheric GHG concentrations. It is also known as a Business-As-Usual Scenario.

Projected Change in Monthly Precipitation for 2041-2060 compared to the reference period (1960-1990)

Projected Change in Monthly Precipitation for 2061-2080 compared to the reference period (1960-1990)

Ξ - EN

