Resolving Food Security Through Technology

Maria Zubair Punjab Information Technology Board Lahore, Pakistan

Introduction

Food, Agriculture, Technology

Food

- Historically Humans secure food:
 - Hunting and Gathering
 - ► Agriculture
- ▶ 1/9 people in the world today are under nourished
- Poor nutrition causes nearly 45% of deaths in children under five.

Agriculture

- Agriculture is the single largest employer for providing livelihood to 40% of today's global population.
- 500 million small farms worldwide provide up to 80% food consumed by the developing world.
- Zero Hunger: Sustainable Development Goal

Technology

- Emerging Technologies
 - Big Data
 - Agriculture Drones
 - Deep Learning
 - ► UAV's, LIDAR, Radar
 - Multispectral Satellite Imagery
 - Machine Learning
 - Cloud Computing
 - Space Technology

Food, Agriculture and Technology

Why are we doing this?

- > Pakistan like many others is an agriculture based economy country.
- Developed countries are using state of the art technologies for agriculture.

So we need to cope up

Develop a cheap and sustainable solution for agriculture.

Methodology

Conventional method of classification, using GIS tools

Introduction

- Acquisition Sentinel 2(multispectral imagery) data
- Field Survey
- Sentinel 2 preprocessing
 - Atmospheric Corrections
 - Layer Stacking, Mosaicking and Clipping
 - Filtering and Histogram Correction
- Signature Plotting using field data
 - Crop Library
- Signature based Classification (Minimum Distance Classifier Euclidean Distance)
- Acreage and yield calculations
- Accuracy Assessment

Results

- ▶ 92% Accuracy
- Classified 32 different variety of crops.
- Area based Crop yield prediction model.

Crop classification using ground sampling

Classification map of District Toba Tek Singh

40 km

Т	eaend	
	cycnu	

Crop (Per Acre) Sugar Cane (700 Mann) Sugar Cane (600 Mann) Maiz (75 Mann) Chari (200 Mann) Maiz (95 Mann) Sugar Cane (400 Mann) Sugar Cane (800 Mann) Cotton (20 Mann) Sugar Cane (500 Mann) Sugar Cane (1200 Mann) Cotton (35 Mann) Sugar Cane (300 Mann) Cotton (22 Mann) Cotton (19 Mann) Sugar Cane (900 Mann) Cotton (15 Mann) Cotton (15 Mann) Sugar Cane (900 Mann) Cotton (18 Mann) Bhindi (250 Mann) Jawaar (600 Mann) Bhindi (180 Mann) Maiz (65 Mann) Cotton (25 Mann) Maiz (65 Mann) Kalar Maar Grass (400 Mann) Kalar Maar Grass (600 Mann) Kalar Maar Grass (600 Mann) Kalar Maar Grass (600 Mann) Sugar Cane (1000 Mann) Sugar Cane (1000 Mann) Sugar Cane (1000 Mann)	
 Kalar Maar Grass (600 Mann) Sugar Cane (1000 Mann) Tobacco (40 Mann) Tobacco (45 Mann) Sugar Grass (1400 Mann) 	
Water Barren Land Water Logged or Waste Land Forest and Agro-Forest	

Class	PixelSum	Percentage %	Area [metre^2
1.0	46168	0.564241914199	18467200.0
2.0	75983	0.928625744381	30393200.0
3.0	43918	0.536743553712	17567200.0
4.0	96900	1.18426272496	38760000.0
5.0	35755	0.436979501867	14302000.0
6.0	206664	2.52574274294	82665600.0
7.0	42043	0.513828253307	16817200.0
8.0	475773	5.81465665058	190309200.0
9.0	130719	1.59758141531	52287600.0
10.0	59214	0.723683519047	23685600.0
11.0	31980	0.390843363717	12792000.0
12.0	111336	1.36069220584	44534400.0
13.0	91908	1.12325302916	36763200.0
14.0	149997	1.83318736796	59998800.0
15.0	14446	0.176551695818	5778400.0
16.0	69694	0.851764771447	27877600.0
17.0	119253	1.45744977027	47701200.0
18.0	167608	2.04842009086	67043200.0
19.0	117675	1.43816425345	47070000.0
20.0	35263	0.43096652704	14105200.0
21.0	46617	0.569729364803	18646800.0
22.0	7993	0.0976863979421	3197200.0
23.0	64778	0.791683909157	25911200.0
24.0	25912	0.316683340858	10364800.0
25.0	74699	0.912933346663	29879600.0

Above is Classification report of classes related pixels showing each class percentage and area in meter² (Each class represent the separate class type)

Kamalia (Reserve) Forest

Natural Color (RGB) image showing Forest area

Classified image showing main forest class (light green) also the few crop patches (dark green) and barren/empty land (yellow) within forest.

NDVI image showing health profile of forest

Issues

- Process is Computation intensive and takes time
- Algorithm only works with certain number of data points.
- No simplified representation of classified data.
- Data Storage
- Frequent availability of data

Food Security

Food Security

- Food security exists when all people have physical and economic access to sufficient, safe and nutritious food that meets their dietary needs for an active and healthy life.
- It is a measure of the availability of Food and Individuals accessibility to it, where accessibility includes affordability.
- ▶ FAO identified the four pillars of Food Security as
 - Availability
 - Access
 - Utilization
 - Stability

Agri@HOME (Methodology 2)

Volunteer Computing based Machine Learning trained Crop Classification Solution for Agriculture

Project

- A. Crop Signature Library and Satellite Imagery
- B. Crop classification Algorithm
- c. Crop Yield calculation models
- D. Volunteer Computing

Crop Signature Library and Satellite Imagery

- Sentinel 2A
- Spatial resolution of **10** m
- Multi-spectral data with **11** bands
- Crop Signature Collection using extension workers who already work in the field as advisory to farmers.
- Signatures are marked per season and data is collected periodically.
- Data is saved in database with a unique nomenclature as each tile is subdivided into 100 cell tiles for processing.

Crop Classification Algorithm

Crop Health Estimation using NDVI

Built Up area Elimination using NDBI

- Field Segmentation
 - Based on signatures (NDVI)
 - Existing segments(fields)

Random Forest using Minimum Distance Classifier

Crop Yield Model

- NDVI(Normalized Difference Vegetation Index) based Model
 Formula: Yield = (acreage x seed type) x %(scaled NDVI)
 acreage is area used by a specific crop variety,
 seed type is the estimated yield produced by a seed and
 *NDVI is a health vegetation index
- 2. Burke and Lobell Model (SYCM)
 - **Simulations** to output
 - ► Leaf Area Index(LAI),
 - ▶ biomass,
 - ► Green chlorophyll vegetation index(GCVI)
 - ▶ water stress and weather.
 - **Statistical model** using above variables
 - **Regression model** based on calculated yield to satellite based actual yield data.

Implementing

this

*NDVI = ρ NIR- ρ Red / ρ NIR + ρ Red

Volunteer Computing

- Using BOINC (Berkeley Open Infrastructure for Network Computing)
- Customized architecture for Agri@HOME to use idle resources for crop classification and yield estimation
- 10 hours task takes approximately 25 minutes.
- Multiple users across the world can contribute by installing this piece of code in their machines.
- A WEBSITE www.foodathome.com is a "work in progress". It will work as a platform to see classified crops and their yield and contribute by lending computation cycles by installing the software on your machine.

Volunteer Computing Stats

Food@home Project -Computing -Community -

Site -

Top hosts

Computer info	Rank	Owner	Recent average credit	Total credit	BOINC version	CPU
ID: 18 Details Tasks Cross-project stats:	1	РІТВ 🍄	39.63	649	7.8.3	GenuineIntel Intel(R) Core(Stepping 3] (8 processors)
ID: 28 Details Tasks Cross-project stats:	2	Studentr13_2	36.55	444	7.12.1	GenuineIntel Intel(R) Core(Stepping 9] (8 processors)
ID: 4 Details Tasks Cross-project stats:	3	Stundentr2_1 🚏	18.46	457	7.8.3	GenuineIntel Intel(R) Core(Stepping 9] (8 processors)
ID: 2 Details Tasks Cross-project stats:	4	Studentr1_2 🏆	16.78	452	7.12.1	GenuineIntel Intel(R) Core(Stepping 9] (8 processors)
ID: 5 Details Tasks Cross-project stats:	5	Student 🚏	16.57	401	7.8.3	GenuineIntel Intel(R) Core(Stepping 9] (8 processors

Example: Punjab

Largest Province of Pakistan

Punjab Wheat Yield Estimation

- Downloaded **38** tiles from **7** vertical strips of Sentinel 2A for **Punjab**.
- Unprocessed tile size of 38 tiles is approx. 30GB.
- Processed tile size is approx. 60GB.
- Tiling (dividing each tile to 100 small "cell tiles") and adding nomenclature for cell tile, converting 38 tiles to 3800 cell tiles.
- A complete tile on average takes 10 14 hours, where as our code process cell tile in 4 to 8 minutes(depending on the system).
- ▶ Processed Complete Punjab in less than 2 days, using 15-20 machines(available from 6pm 8am)

Punjab Tiles

Results

Agro Forest (Orchards -Light Green)

Barren and water logged land (Pink)

Water and soil around water(Blue and yellow)

Issues Resolved

- Instead of Available ML algorithms, we have designed a hybrid algorithm meeting our needs
- Have designed, a data collecting, storing and searching model using discrete global grid tile system.
- Using already available workforce in the agriculture department for collecting samples from field.
- A volunteer computing based structure to assist in making the computation time efficient.

Conclusion

We are addressing food security by solving 3 out of four pillars of food security by FAO

Availability

- Making food available by increasing produce
- Access
 - ▶ Food is accessible and cheap if surplus
 - With sufficient availability of food, access to food would be easier
 - More food will reach to the mouths of undernourished and stunted.
- Utilization
- Stability
 - > This methodology will stabilize agriculture based ecosystem
 - Agriculture ecosystem contributes in improving lifestyle of people by providing work opportunities

Conclusion

- Early warning system for food shortage.
- Improve crop yield predictions on the go with frequent availability of satellite data.
- Help in improving agriculture based economies
- Policy decisions around import and export of food could be assisted

Thank you