Geodetic Capacity Building in Multilateral Forums

International GNSS Service
Global Geodetic Observing System
Group on Earth Observations
UN GGIM Subcommittee on Geodesy

Tools for Funding + Communication

GGIM-World Bank Integrated Geospatial Information Framework
Sustainable Development Goals
Sendai Framework for Disaster Risk Reduction
United Nations/Fiji Workshop on the Applications of Global Navigation Satellite Systems
June 24-28, 2018

NASA’s Global GNSS Network
David Stowers
Product Delivery Manager, Global Observing System – GNSS

International GNSS Service + Global Geodetic Observing System

United Nations Global Geospatial Information Management + Multilateral Forums

Allison Craddock
Director, IGS Central Bureau and Manager of External Relations, Global Geodetic Observing System (GGOS)

Jet Propulsion Laboratory
California Institute of Technology

© 2018 California Institute of Technology. Government sponsorship acknowledged
THE INHERENTLY INTERNATIONAL NATURE OF GEODESY

“Global geodesy is dependent on contributions from nations all around the globe, since no single country can maintain the Global Geodetic Reference Frame alone”

— United Nations Initiative on Global Geospatial Information Management

➢ The need to know our location on earth down to the smallest possible measurement may only be satisfied by international collaborations in geodesy

➢ No country has the capacity, be it physical, infrastructural, analytical, or financial, to make such precise measurements on its own

➢ By collaborating with international partners and NGOs, we are able to collectively leverage limited assets to the top of current geodetic knowledge and capability
The International GNSS Service (IGS)
• One of four Space Geodesy Techniques and Services supported by NASA
 • Very Long Baseline Interferometry (VLBI)
 • Satellite Laser Ranging (SLR)
 • Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS)*
 • Global Navigation Satellite Systems (GNSS)

• Data used in Terrestrial Reference Frame determination (local motion)

• GNSS Sites included in regular Position/Velocity Time Series (see figure)

* Developed/operated by CNES in cooperation with CRGS and IGN

The IGS at a Glance

➢ A voluntary federation of over 200 self-funding agencies, universities, and research institutions in more than 100 countries; working together to provide the highest precision GPS satellite orbits in the world.

➢ Providing free and open access to the highest precision products available for scientific advancement and public benefit.

 ➢ These products support a wide variety of applications that touch millions of users in virtually all segments of the global economy

➢ Producing products that support realization of the International Terrestrial Reference Frame (ITRF) while providing access to tracking data from over 500 worldwide reference stations

➢ Working for the continuous development of new applications and products through Working Groups and Pilot Projects

➢ Supporting geodetic research and scholarly publications

➢ Functioning as a component of the Global Geodetic Observing System (GGOS) and member of the World Data System (WDS)

➢ Co-chair organization of the International Committee on GNSS (ICG) Working Group on Reference Frames, Timing and Applications (WG-D)
NASA site contributions to IGS

• 66 sites, globally distributed (http://www.igs.org/network)
• Multi-constellation receivers, geodetic monuments and antennas

Representative examples of GNSS equipment

• Data publicly available via CDDIS (https://cddis.nasa.gov)
 • Files in 1s/15min, 30s/hourly, 30s/daily RINEX format with low latency*
 • https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/GNSS_data_holdings.html
 • Streaming 1s data available from most sites
 • https://cddis.nasa.gov/Data_and_Derived_Products/Data_caster_description.html

* Files also available at other IGS Global Data Centers
Ground Station Network

509 sites participating
200 organizations
100 countries
IGS GNSS sites around Fiji

More information on IGS Site Guidelines: https://kb.igs.org/hc/en-us/articles/202011433
The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG)
Global Geodetic Observing System (GGOS)

• **Genesis:**
 • GGOS was established by the IAG, first as a Project in 2003 and then as a permanent Component in 2007

• **Vision:**
 • Advancing our understanding of the dynamic earth system by quantifying our planet’s changes in space and time.

• **Mission:**
 • To provide the observations needed to monitor, map, and understand changes in the Earth’s shape, rotation, and mass distribution
 • To provide the global geodetic frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications
 • To benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built

http://www.ggos.org
GGOS External Relations Overview

Participation and Representation in External Stakeholder Organizations

➢ United Nations Global Geospatial Information Management (GGIM) Subcommittee on Geodesy (SCoG)
➢ Group on Earth Observations (GEO)
➢ Committee on Earth Observation Satellites (CEOS)
➢ International Council for Science (ICSU) World Data System (WDS)

Current External Relations Projects

➢ Connecting United Nations Initiatives with the GGOS Geohazards Focus Area through the GAR19 Report
➢ Connecting the GEO Work Program (Sendai and SDGs) United Nations Initiatives with GGOS

Future External Relations Projects

➢ IAG/GGOS Geodetic Academic Network
➢ External Essential Variables Identification
➢ DOIs for Geodetic Data and Products
Two Paths to Connect GGOS with the United Nations

➢ Geodetic observations have a clear role in helping to reduce the risk of disasters, as well as contribute to disaster preparedness with better mitigation and response.

➢ Earth observations also play a major role in monitoring progress toward, and achieving, the SDGs.
Geodetic observations have a clear role in helping to reduce the risk of disasters, as well as contribute to disaster preparedness with better mitigation and response.

GTEWS has successfully submitted a chapter/paper for the 2019 UN Global Assessment Report on Disaster Risk Reduction (GAR19), which is a major UN report addressing disaster risk reduction that contributes to regional and global platforms for disaster risk reduction, as well as the high-level political forum on sustainable development.
Group on Earth Observations (GEO)
The Group on Earth Observations (GEO) is an intergovernmental partnership working to improve the availability, access and use of EOs for the benefit of society. GEO has a work programme of over 70 activities, which cover the global priority areas of the 2030 Agenda, the Paris Agreement and the Sendai Framework. Through this work, GEO has brought together the Global Earth Observation System of Systems, which makes available more than 400 million units of data, information and resources.
What does GEO do?

Disaster Risk Reduction in the GEO Work Programme

Earth observations contribute to disaster mapping, better mitigation and response, working with the Sendai Framework on Disaster Risk Reduction

GEO Engagement Priorities

SDGs

Climate Change

Disaster Resilience

Initiatives

- Climate Change Impact Observation on Africa’s Coastal Zones (GEO-CCIOACZ)
- Data Access for Risk Management (GEO-DARMA)
- GEO Cold Regions Initiative (GEOCRI)
- GEO Geohazards Supersites and Natural Laboratories (SSNL)
- GEO Global Network for Observation and Information in Mountain Environments (GEO-GNDME)
- GEO Global Water Sustainability (GEOGLOWS)
- GEO Human Planet Initiative: Spatial Modeling of Impact, Exposure and Access to Resources
- Global Urban Observation and Information
- Global Wildfire Information System (GWIS)

Community Activities

- African Geochemical Baselines
- Chinese Tsunami Mitigation System
- Earth Observations for Disaster Risk Management
- Earth Observations for Geohazards, Land Degradation and Environmental Monitoring
- Global Ecosystem and Environmental Observation Analysis Report Cooperation (GEOARC)
- Global Flood Awareness System (GloFAS)
- Global Flood Risk Monitoring
- Land Cover and Land Cover Change
- TiGGE (Thorpe Interactive Grand Global Ensemble) evolution into a Global Interactive Forecast System (GIFS)

GEO Societal Benefit Areas

- Biodiversity and Ecosystem Sustainability
- Water Resources Management
- Sustainable Urban Development
- Public Health Surveillance
- Infrastructure and Transportation Management
- Food Security and Sustainable Agriculture
- Disaster Resilience
- Energy and Mineral Resource Management
Value of EO for DRR
Earth Observations for Disaster Risk

EO data and information can provide a broad overview of large disaster-affected areas quickly. Using EO data and technology, disaster risks can be identified and assessed, and risks can be prevented or mitigated.

Disaster Risk Reduction
A GEO Priority Engagement Area

GEO supports Disaster Risk Reduction by improving coordination of Earth observations to increase ability to disaster forecasting, preparation, mitigation, management and recovery.
The Sendai Framework for Disaster Risk Reduction

- Supported by the United Nations Office for Disaster Risk Reduction (UNDRR) at the request of the UN General Assembly.

- Significant focus on disaster risk management as opposed to disaster management.

- Focus is on natural and man-made hazards and related environmental, technological, biological hazards and risks.
The Sendai Framework addresses the risk of small-scale and large-scale, frequent and infrequent, sudden and slow-onset disasters caused by natural or man-made hazards...

...and environmental, technological and biological hazards and risks.

The Global Assessment Report on DRR is a biennial snapshot contextualising progress in realising the global targets of the Sendai Framework, and contributes to the High Level Political Forum on Sustainable Development.

Download report and more information: https://gar.unisdr.org
The Sendai Framework for Disaster Risk Reduction: How Earth observations fit in

Leveraging disaster-related geospatial and Earth observation data

The 2030 Agenda requires data to understand needs, to study and define solutions, and to monitor progress. The leveraging of disaster-related geospatial and EO data and tools in the pursuit of SDGs and the goals and targets of the Paris Agreement, NUA and other related agreements is essential.

Advancements in open data provided from satellites have made more advanced models possible. Landsat and Copernicus are the two contemporary examples by the United States Geological Survey/ NASA and ESA, respectively. Landsat provides the longest temporal records of moderate resolution multispectral data of the Earth’s surface, while Copernicus is providing the highest-resolution imagery available openly and globally. In 2014, the Sentinel-1 mission provided a polar-orbiting, all-weather, day and night radar imaging mission for land and ocean services. In 2015, Sentinel-2A was launched followed by Sentinel-2B in 2017, providing spatial resolutions of 10, 20 and 60 m. This has improved the resolution previously available and provides high-resolution imagery to be used in various hazard models. The fact that the data is open has resulted in a boom in scientific research based on satellite data.
Supporting Sendai
Coordinating Earth Observations for Disasters

GEO supports implementation of Sendai Framework targets E, F and G through engagement with UNISDR.

E: Substantially increase the number of countries with national and local disaster risk reduction strategies by 2020;

F: Substantially enhance international cooperation to developing countries through adequate and sustainable support to complement their national actions for implementation of the present framework by 2030;

G: Substantially increase the availability of and access to multi-hazard early warning systems and disaster risk information and assessments to people by 2030.
United Nations Global Geospatial Information Management Subcommittee on Geodesy
Education, Training and Capacity Building Efforts in support of the GGRF Roadmap Implementation Plan

Progress on the Proposed Five-Year Education, Training, and Capacity Building Implementation Plan

Mikael Lilje (Sweden), Working Group Lead,
Augustin Bamouni (Burkina Faso), Graeme Blick (New Zealand), Allison Craddock (United States), Paul Cruddace (United Kingdom), Ryan Keenan (Septentrio), Basara Miyahara (Japan), Maria Cristina Pacino (International Association of Geodesy), Dan Roman (United States), Robert Sarib (Australia), Sharafat Gadimova (UNOOSA International Committee on GNSS)

June 2019
United Nations General Assembly Resolution 2015: Global Geodetic Reference Frames for Sustainable Development
Sub-Committee Progress

- Recognising its importance the UN General Assembly adopted resolution 69/266 in February 2015, entitled ‘A Global Geodetic Reference Frame for Sustainable Development’
- At the 6th session of UN GGIM, the Road Map for the development and sustainability of the Global Geodetic Reference Frame was endorsed by the CoE, who then requested the development of an implementation plan, and a Position paper on Governance
An accurate, sustainable and accessible Global Geodetic Reference Frame to support science and society
“A global reference frame is key if you want to be able to compare data from all continents; and to empower scientists from all parts of the world – to really give precise information, to make the planet a better place.”

– Erik Solheim, Executive Director

United Nations Environment Programme
Road Map VISION
An accurate, sustainable and accessible Global Geodetic Reference Frame to support science and society

Sustainable and Enhanced GGRF

Geodetic Infrastructure

Policies, Standards and Conventions

Education, Training and Capacity building

Appropriate Governance

Outreach and Communication

Graphic courtesy of Gary Johnston/UN GGIM SCoG
GGRF Roadmap Recommendations Highlights

❖ Actions must be taken to maintain and upgrade current national infrastructure and secure all Member States accurate access to the Global Geodetic Reference Frame (GGRF)

❖ Member States are urged to support efforts to develop geodetic standards, and more openly share their data, standardized operating procedures, expertise, and technology

❖ Actions must be taken to raise geodetic competence and skills, as a lack of geodetic capability currently limits utilization of the GGRF in many countries; and hinders their achievement of the UN Sustainable Development Goals (SDGs). It also threatens the development and sustainability of the GGRF

❖ Actions must be taken to raise the general awareness around the value proposition of the GGRF

❖ Actions must be taken to improve the GGRF governance mechanism, as this is needed to ensure the sustainability and improvement of the GGRF
Within the past year, the work of the Subcommittee has started transitioning from ideological to implementation-based.

2018 Accomplishments (tabled at UN CoE GGIM 8)

- **GGRF Road Map Implementation Plan**
- **Sections on each Focus Group (except Governance)**
- **Position Paper on Appropriate Governance Arrangements**
- **Recommends Subcommittee investigate the establishment of a UN Convention on Geodesy**
- **Revised Terms of Reference adopted**
- **To enable increased working capacity of Subcommittee**
Education, Training and Capacity Building

The ETCB working group seeks to

- **Assess the current availability** of education, training, and capacity building resources
- **Identify gaps** in capacity or other areas of need
- **Propose** short- and long-term **solutions** to realize the full scientific and social benefit of the Global Geodetic Reference Frame.
Think Globally – Act Regionally

❖ Even though basic ETCB needs are global, a **regional focus strategy is essential**!

❖ The nature, size, and variety of **challenges differ regionally** and may include linguistic, technological, economic, and cultural impediments.

❖ It is also clear that **access to highly skilled personnel varies widely** among Member States, thus necessitating the need to ensure that knowledge and competence is readily and openly shared.

❖ A key to optimizing the efficiency of the group’s objectives is to identify and make existing educational and **capacity building resources easily discoverable**.
Pilot Initiative:

Provide a framework for Member States to identify their ‘Level’ of competency requirements

- First version has been available for participation since April 2018; will continue to accept responses.
- Some 80 Responses from 50 countries

Survey available here

<table>
<thead>
<tr>
<th>Level</th>
<th>Competency Requirements</th>
<th>Training provided by</th>
<th>Countries that might have one CORs and maintain a traditional geodetic network of reference marks – e.g. small Pacific Island Nations?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic understanding of:</td>
<td>Educational institutions – universities and polytechnic institutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GNSS</td>
<td>Government mapping agency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reference frames, including geoid models, vertical and horizontal datums</td>
<td>Private companies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Government mapping agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Private companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Educational institutions – universities and polytechnic institutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Government mapping agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Private companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Countries that might have one CORs and maintain a traditional geodetic network of reference marks – e.g. small Pacific Island Nations?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The above plus knowledge of:</td>
<td>Educational institutions – universities and polytechs</td>
<td>Countries with small CORs network and those who adopt global Reference frames for their nation reference frames – e.g. Fiji?</td>
</tr>
<tr>
<td></td>
<td>• Constructing, building and running a small CORs network</td>
<td>UN-GGIM Geodesy Capacity Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GNSS processing using standard software - e.g. Trimble, Compass Solution (ComNav), LGO(Leica),...</td>
<td>FIG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Least squares processing and provision of datum access</td>
<td>Government mapping agency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Geoids models, precision, determinations and basic implementation</td>
<td>Private companies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Implementation of a vertical datum including use of geoid models</td>
<td>Educational institutions – universities and polytechs</td>
<td>Countries with small CORs network and those who adopt global Reference frames for their nation reference frames – e.g. Fiji?</td>
</tr>
<tr>
<td></td>
<td>• Countries with small CORs network and those who adopt global Reference frames for their nation reference frames – e.g. Fiji?</td>
<td>UN-GGIM Geodesy Capacity Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Government mapping agency</td>
<td>FIG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Private companies</td>
<td>Private companies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Educational institutions – universities and polytechs</td>
<td>UN-GGIM Geodesy Capacity Group</td>
<td>Countries with a more extensive CORS and developing their own specialized national and vertical datum – e.g. New Zealand and Sweden?</td>
</tr>
<tr>
<td></td>
<td>• UN-GGIM Geodesy Capacity Group</td>
<td>IAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FIG</td>
<td>Government mapping agency</td>
<td>Countries with a more extensive CORS and developing their own specialized national and vertical datum – e.g. New Zealand and Sweden?</td>
</tr>
<tr>
<td></td>
<td>• Government mapping agency</td>
<td>Private companies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Private companies</td>
<td>Educational institutions – universities and polytechs</td>
<td>Countries with a more extensive CORS and developing their own specialized national and vertical datum – e.g. New Zealand and Sweden?</td>
</tr>
<tr>
<td></td>
<td>• UN-GGIM Geodesy Capacity Group</td>
<td>IAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IAG</td>
<td>Specialist training courses run by NASA/JPL – e.g. on VLBI or SLR</td>
<td>Countries engaged in Global Reference frame determination and Geodesy Science - e.g. US, Australia and Germany?</td>
</tr>
<tr>
<td></td>
<td>• Private companies</td>
<td>Specialist training courses run by NASA/JPL – e.g. on VLBI or SLR</td>
<td>Countries engaged in Global Reference frame determination and Geodesy Science - e.g. US, Australia and Germany?</td>
</tr>
<tr>
<td></td>
<td>• Specialized software training courses – e.g. Bernese</td>
<td>Countries engaged in Global Reference frame determination and Geodesy Science - e.g. US, Australia and Germany?</td>
<td>Countries engaged in Global Reference frame determination and Geodesy Science - e.g. US, Australia and Germany?</td>
</tr>
</tbody>
</table>

Note: The above table outlines the competency requirements and training provided by various institutions and organizations for different levels of geodetic knowledge. The table also indicates the countries that might have one CORS and maintain a traditional geodetic network of reference marks, as well as those with small CORS networks and those adoption global Reference frames for their nation reference frames.
<table>
<thead>
<tr>
<th>Level</th>
<th>Competency Requirements</th>
<th>Training provided by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic understanding of:</td>
<td>• Educational</td>
</tr>
<tr>
<td></td>
<td>• GNSS</td>
<td>institutions –</td>
</tr>
<tr>
<td></td>
<td>• Reference frames,</td>
<td>universities and</td>
</tr>
<tr>
<td></td>
<td>including geoid</td>
<td>polytechnic</td>
</tr>
<tr>
<td></td>
<td>models, vertical and</td>
<td>institutes</td>
</tr>
<tr>
<td></td>
<td>and horizontal</td>
<td>Government</td>
</tr>
<tr>
<td></td>
<td>datums</td>
<td>mapping agency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Private companies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Countries that</td>
</tr>
<tr>
<td></td>
<td></td>
<td>might have one</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CORs and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maintain a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>traditional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>geodetic network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>marks – e.g.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>small Pacific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Island Nations?</td>
</tr>
<tr>
<td>Level</td>
<td>Competency Requirements</td>
<td>Training provided by</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| 2 | The above plus knowledge of:
- Constructing, building and running a small CORs network
- GNSS processing using standard software - e.g. Trimble, Compass Solution (ComNav), LGO(Leica),...
- Least squares processing and provision of datum access
- Geoids models, precision, determinations and basic implementation
- Implementation of a vertical datum including use of geoid models |
- Educational institutions – universities and polytechs
- UN-GGIM Geodesy Capacity Group
- FIG
- Government mapping agency
- Private companies | Countries with small CORs network and those who adopt global Reference frames for their nation reference frames – e.g. Fiji? |
<table>
<thead>
<tr>
<th>Level</th>
<th>Competency Requirements</th>
<th>Training provided by</th>
<th>Countries with a more extensive CORS and developing their own specialized national and vertical datum – e.g. New Zealand and Sweden?</th>
</tr>
</thead>
</table>
| 3 | The above plus high knowledge of:
• Implementing and running large CORs networks
• High end GNSS processing and datum access
• Geoid model computation and implementation into a vertical datums
• Monitoring earth dynamics and including in datum realization
• Geodetic database management |
• Specialized courses – e.g. geoid school
• UN-GGIM Geodesy Capacity Group
• IAG and FIG
• Government mapping agency
• Private companies |
<table>
<thead>
<tr>
<th>Level</th>
<th>Competency Requirements</th>
<th>Training provided by</th>
<th>Countries engaged in Global Reference frame determination and Geodesy Science - e.g. US, Australia and Germany?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The above plus expert knowledge of:
• Reference frame determination and computation
• High end GNSS analysis and processing
• SLR including analysis and processing
• VLBI including analysis and processing
• Gravity collection, processing and geoid determination
• Analysis centre – combining various geodetic techniques to determine reference frame parameters
• Use of other potential geodetic techniques – e.g. DORIS and InSAR</td>
<td>• IAG
• Specialist training courses run by NASA/JPL – e.g. on VLBI or SLR
• Private companies
• Specialized software training courses – e.g. Bernese</td>
<td></td>
</tr>
</tbody>
</table>
Pilot Initiative:

Identification of Existing Capacity Building Resources and Enabling Discoverability – knowledge database

• Identify and leverage existing ETCB resources
• Develop a system of tagging for **discoverability** and categorization of existing resources:
 • Questionnaire Level 1/2/3/4
 • Standardized Keywords
 • Vetted/endorsed by community
• Establish a central point of information on UN GGIM SCoG website
 • A “referral service” linking to external resources maintained by universities, societies, NGOs, and others
 • Lower the barrier to entry by identifying and explaining first steps to geodetic capacity
Pilot Initiative: Developing Publications

Platform for the Reference Frame in Practice seminars:

- Publication produces by FIG, IAG, IGS and UNOOSA ICG
- Needs an update to be relevant
- Previous authors have been contacted
- New authors are welcome
Pilot Initiative:
Drafting Standardized Capacity Building and Development Frameworks

- How to empower nations to take ownership of relevant capacity building efforts/initiatives by providing a clear, easy to understand framework with standards and references?
 - Addressing different aspects of the GGRF Implementation Plan
 - Tailor to individual member state or region needs and circumstances
 - Increasing capacity capability
 - Organized facilitation of knowledge transfer
- Identify existing standards, frameworks, checklists, and other “how to” resources
- Work in conjunction with stakeholders
Proposed Geodetic Capacity Building Applications for the UN GGIM-World Bank Integrated Geospatial Information Framework

Allison Craddock
Director, IGS Central Bureau
Manager of External Relations, IAG Global Geodetic Observing System (GGOS)

© 2018 California Institute of Technology. Government sponsorship acknowledged
GGIM-World Bank
Integrated Geospatial Information Framework

• UN and World Bank collaborative roadmap to help governments develop, access, and use geospatial information to make effective policies and more accurately direct aid and development resources.

• Makes concrete recommendations on establishing national geospatial information management and putting that information to use.

• Calls for partnerships with civil society, businesses, and academic institutions who have access to relevant data and technology.

• Full document on GGIM website:
 • http://bit.ly/GGIMWBigif
GGIM-World Bank
Integrated Geospatial Information Framework

Governance →
Technology →
People →
Part 1: Overarching Strategic Framework
The Why - via 7 underpinning principles, 8 goals and 9 strategic pathways

Part 2: Implementation Guide
The What – expands on each of the 9 strategic pathways, the Guide comprises reference guides, good practices and specific principles for each of the strategic pathways. The aim is to provide guidance for governments to establish ‘nationally’ integrated geospatial information frameworks

Part 3: Country-level Action Plans
Templates and guides to operationalize the Framework
<table>
<thead>
<tr>
<th>UN GGIM IGIF Strategic Pathways</th>
<th>UN GGIM GGRF Roadmap Focus Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governance and Institutions</td>
<td>Governance</td>
</tr>
<tr>
<td>Policy and Legal</td>
<td>Policies, Standards and Conventions</td>
</tr>
<tr>
<td>Financial</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>Innovation</td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>Policies, Standards and Conventions</td>
</tr>
<tr>
<td>Partnerships</td>
<td></td>
</tr>
<tr>
<td>Capacity and Education</td>
<td>Education, Training and Capacity Building</td>
</tr>
<tr>
<td>Communication and Engagement</td>
<td>Outreach and Communication</td>
</tr>
<tr>
<td></td>
<td>Geodetic Infrastructure</td>
</tr>
</tbody>
</table>

Slide Content Courtesy Nick Brown, Geoscience Australia
This strategic pathway establishes enduring capacity building programs and education systems so that geospatial information management and entrepreneurship can be sustained in the longer term.

The objective is to raise awareness and develop and strengthen the skills, instincts, abilities, processes and resources that organizations and communities require to utilize geospatial information for decision-making.
ETCB Perspective

In the perspective of the ETCB Working Group, effective education, training, and capacity building seeks to:

• Assess the current availability of education, training, and capacity building resources

• Identify gaps in capacity or other areas of need

• Propose short-, mid-, and long-term solutions to realize the full scientific and social benefit of the Global Geodetic Reference Frame

• Help Member States bridge the “geospatial digital divide”

• Advance the agenda of geospatial information and technology for sustainable development
ETCB Guiding Principles for Supporting IGIF

A strategic regional focus, sensitive to language and culture:

➢ The SCoG will conduct due diligence, with the assistance of UN-GGIM regional groups, to ensure that all coordination and development efforts are conducted in a way that is respectful to local and regional cultures, languages, and in supportive collaboration with existing entities seeking to promote geodetic capacity building and education.

Ensure that knowledge and skills are discoverable and openly shared:

➢ Identify existing educational and capacity building resources and facilitate their discoverability.

Geodetic Organizational Support, and Advocacy:

➢ Maintain close contact with national and international agencies and organizations, including the International Association of Geodesy (IAG), IAG geodetic technique services (such as the International GNSS Service), and the International Federation of Surveyors (FIG), who may provide funding, advocacy, or other technical support for training and capacity building. Work with stakeholders to ensure cooperation and benefits for the ETCB strategy.
Proposed ETCB “Deliverables” in response to IGIF

- Geodetic Capacity/Competency Assessment and Gap Analysis
- Identification of Existing Capacity Building Resources and Enabling Discovery
 - Knowledge Base and Training “Hub”
- Regionally Focused Capacity Building Workshops
- Standardized Capacity Building and Development Frameworks
- Cross-linkages to Sustainable Development Goals (SDGs)
- Cross-linkages to Sendai Framework for Disaster Risk Reduction
ETCB and the UN Sustainable Development Goals (SDGs)
SDG Metrics: Targets and Indicators

TARGET 4.3
By 2030, ensure **equal access** for all women and men to affordable and quality technical, vocational and tertiary education, including university

INDICATOR 4.3.1
Participation rate of youth and adults in formal and non-formal education and training in the previous 12 months, by sex

TARGET 4.B
By 2020, substantially **expand globally the number of scholarships** available to developing countries, in particular least developed countries, small island developing States and African countries, for enrolment in higher education, including vocational training and information and communications technology, technical, engineering and scientific programmes, in developed countries and other developing countries

INDICATOR 4.B.1
Volume of **official development assistance** flows for scholarships by sector and type of study

TARGET 4.C
By 2030, substantially **increase the supply of qualified teachers**, including through international cooperation for teacher training in developing countries, especially least developed countries and small island developing States

INDICATOR 4.C.1
Proportion of teachers in: (a) pre-primary; (b) primary; (c) lower secondary; and (d) **upper secondary education** who have received at least the minimum organized teacher training (e.g. pedagogical training) pre-service or in-service required for teaching at the relevant level in a given country
TARGET 4.3
By 2030, ensure **equal access** for all women and men to **affordable and quality technical, vocational and tertiary education**, including university

INDICATOR 4.3.1
Participation rate of youth and adults in **formal and non-formal education and training** in the previous 12 months, by sex

How can geodetic capacity building support achieving this goal?

- Apprenticeships
- Regional Workshops
- Vetting and Discoverability of Education Resources (Platform)
- Frameworks for Capacity Building
- University Program Development
- Technical Training Sessions
- Certified Online Training Programs

Immediate need: current/baseline data (e.g. participation rate)
How does this relate to the IGIF Capacity and Education Strategic Pathway?

- Apprenticeships
- University Program Development
- Frameworks for Capacity Building
- Regional Workshops
- Technical Training Sessions
- Certified Online Training Programs
- Vetting and Discoverability of Education Resources (Platform)
How does this translate to the Sendai Framework Targets?

E: Substantially increase the number of countries with national and local disaster risk reduction strategies by 2020;

F: Substantially enhance international cooperation to **developing countries** through adequate and sustainable support to complement their national actions for implementation of the present framework by 2030;

G: Substantially increase the availability of and access to multi-hazard early warning systems and disaster risk information and assessments to people by 2030.
How does this translate to the Sendai Framework Target Indicators?

F: **Substantially enhance international cooperation to developing countries** through adequate and sustainable support to complement their national actions for implementation of the present framework by 2030;

- **F-4** Total official international support (ODA plus other official flows) for the transfer and exchange of disaster risk reduction-related **technology**.

- **F-5** Number of international, regional and bilateral programmes and initiatives for the transfer and exchange of **science, technology and innovation** in disaster risk reduction for developing countries.

- **F-6** Total official international support (ODA plus other official flows) for disaster risk reduction **capacity-building**.

- **F-7** Number of international, regional and bilateral programmes and initiatives for disaster risk reduction-related **capacity-building** in developing countries.

- **F-8** Number of developing countries supported by international, regional and bilateral initiatives to strengthen their disaster risk reduction-related statistical **capacity**.
For more Information and to download newsletters and other resources prepared by the Subcommittee on Geodesy:

GGIM.un.org
www.unggrf.org

@UNGGRF
Some take-home resources

- **International GNSS Service**
 - Information, data and product access: [IGS.org](http://igs.org)

- **GGOS Paper on GNSS-Enhance Tsunami Early Warning Systems**

- **GGIM-World Bank**
 Integrated Geospatial Information Framework

- **UN Global Geospatial Information Management + GGRF**
 - Committee of Experts: ggim.un.org
 - Subcommittee on Geodesy: ggim.un.org/UNGGIM-wg1/
 - Information about the GGRF: www.unggrf.org

- **Sendai Framework for Disaster Risk Reduction**
 - Global Assessment Report 2019: gar.unisdr.org
 - Interactive Story Map: arcg.is/1f9OXP
 - Sendai Framework Monitor: sendaimonitor.unisdr.org

- **Sustainable Development Goals**
 - Group on Earth Observations support of SDGs: eo4sdg.org

“...reliable geospatial data helps policymakers, international organizations and civil society have better information for decision-making processes, in particular in directing aid and development resources.

Although governments hold a significant amount of geospatial information, it is often not current, shared or integrated with other necessary data.

High-quality, timely geospatial information is often overlooked in policymaking, yet is fundamental to achieving inclusive growth and sustainable development.”