Dissemination of Real-Time and Post-Mission value added GNSS data – A Global Operator’s Perspective

Noor Raziq – GNSS Network Manager Australia

Workshop on the Applications of Global Navigation Satellite Systems, Suva, Fiji
24 – 28 June 2019
Outline

• Introduction
• History and Trends
• Australia – use case
 • Coverage
• Fiji – current situation
• Real time and post processing GNSS data dissemination
HxGN SmartNet – Correction Service

• Cloud based service to provide **centimeter-level** accuracy to GNSS rovers via mobile internet **in seconds** with **24/7/365 availability**

• Largest network with over 4,500 Reference Stations worldwide available in 22 countries is providing **Open Standard GNSS correction** for RTK positioning

• Over 13 years experience in the correction service market with a globally experienced team
Evolution to HxGN SmartNet

From single base solution to a world-wide network correction services build on technology from Leica Geosystems
HxGN SmartNet Applications & Businesses

Land Surveying Agriculture Machine Control & Construction GIS Utilities UAV

Automotive Agriculture Logistics Telecoms Asset Data Collection IoT Applications
HxGN SmartNet: Commercial Service Offering

Commercial service offering differs from country to country (market driven)

B2C offering
- Real time correction data streams as
 - Flat rate subscription
 - Consumption-based subscription
- Download of post processing products (RINEX files, Online Post-Processing, etc.)
- Mobile app and web page access

B2B offering
- Enterprise subscription models (Consumption or based on the number of users)
- Integration of API for automation of subscription administration
- Integration of API for post processing automation (using X-pos technology)
Industry Trend 1

Dual Frequency GNSS introduced to the mass market

- Evolution of low cost chipset from single to dual frequency (at same low price)
- First Xiaomi Android phone with Broadcom dual-frequency chip
- Access to GNSS raw data via Android operating systems
- Possibility to utilize correction data for RTK positioning
- Main limiting factor for precise positioning: GNSS antenna in mobile phones
- Second limiting factor: number of channels for GNSS signal tracking
Industry Trend 2

SSR vs RTK

- SSR (State Space Representation): correction data format that transmits the error of the relevant GNSS sources
 - Clocks Orbits, Ionosphere, Troposphere, etc.
 - No standard established
 - Broadcast capability for larger area at low bandwidth

- RTK (OSR – Observation Space Representation): correction data format that transmits the errors as a lump sum
 - Widely implemented on dual-frequency GNSS hardware and standardized via RTCM
 - Usually used with individualized data streams for rover (iMax, VRS, SB)

Estimation of SSR parameters

SSR ➔ OSR
GGA

SSR ➔ OSR
SSR output
SSR

SSR ➔ OSR
SSR output
SSR Rover

RTK Rover

Today

Future
Industry Trend 3

GNSS on the road

- Long history of autosteering with GNSS guidance systems (&IMU)
- Accuracy requirements on the road are lower but reliability becomes the key requirement (failure rate: <0.00000001%)
- Technology: SSR with Integrity on a pan-continental level and sensor fusion
- Automotive requires to serve a very high number of users (broadcast)
- Connected Car ➔ Assisted Driving ➔ Autonomous driving
Industry Trend 4

Stretch the station separation of the network

• Higher station density is required during high solar activity to estimate the ionosphere correctly
• RTK positioning requires dense network of ~75km (limitations on the rover side)
• Positioning with SSR technology can further stretch the station spacing (reduction in convergence time at the rover)
• Network design for good or bad times?
 • Saving potential: ~3/4 of base stations
 • Station separation 75km…120km…240km
 • Consideration on redundancy for individual station failures

Source: www.spaceweatherlive.com
Conclusion on Industry trends

Things will change … but slowly

RTK will remain the most important technology in the classic GNSS market for the next 5 years (at least)
- Large user base (that will modernize slowly)
- Fastest and most accurate GNSS positions

SSR will come!
- Standardization will be the main driver
- Introduction first for mass market application (cars, mobile phones, and other new ‘rovers’)
- Low bandwidth and cheap broadcast capability will be the striking arguments for SSR
- More flexible on station separation

Cheap broadcast capabilities will be the main argument for service providers
- Cloud dissemination vs Native carrier dissemination via 3GPP
Correction Service on a worldwide scale build on over 4,500 reference stations

North America
1300+ STNs

Europe
2500+ STNs

Russia
350+ STNs

Australia
600+ STNs
HxGN SmartNet - Australia

- Largest provider of CORS service (670+) in Australia since 2009.
HxGN SmartNet - Australia

- Coverage – Victoria (125 sites)
 - Agreement with DELWP VIC = 116
 - GA = 1
 - HSN = 8
 - Integration of cross-border sites (SA & NSW)
HxGN SmartNet - Australia

- Coverage – New South Wales (228 sites)
 - DFSI-SS = 180
 - GA = 11
 - HSN = 37
 - Continuous coverage from SA and VIC through to QLD
HxGN SmartNet - Australia

- Coverage – South Australia (54 sites)
 - GA = 12
 - HSN = 42
 - Coverage is expanding
 - Offer cross border service – SA & VIC
HxGN SmartNet - Australia

• Coverage – Tasmania (23)
 • GA = 10
 • HSN = 13
 • Predominately Ag usage in North
 • Plans to expand coverage between the main towns
HxGN SmartNet - Australia

- Coverage – Western Australia and Northern Territory (96 sites)
 - GA (Land NT + LandGate) = 61
 - HSN = 35
 - Coverage is growing
 - Focus on expansion around metro Perth
Fiji CORS Network

• Current Network – Base Stations
 • Geosciences Australia / South Pacific Community Sites
 • LTK
 • SUV
 • High Target Sites
 • LAB
 • TAV
 • NAB
 • Leica Geosystems
 • ROT
 • KOR
 • KDV
 • LAK
 • ONO
Fiji CORS Network

- **Future**
 - Base stations currently being installed
 - More Base Station
 - Upgrade of stations
 - Networking Software Installation and Operation
 - What software
 - Business Model
 - Public Private Partnership
 - Publicly operated.
 - Expected adoption by the industry / private and public sector
 - Operation and maintenance
GNSS Data Dissemination

• Seems simple
 • Get data from base stations
 • Provide to end users
GNSS Data Dissemination

- Extensive Network
 - 670+ sites

- Range of Users
 - Different applications
 - Agric
 - Survey
 - Machine Control
 - UAVs
 - Utilities finding
 - PPK users
 - Different geographical regions
 - State
 - National

- Real Time Data
 - Most users

- Post Processing Data
 - PPK users

- Processing Methodology
 - Network
 - MAC
 - VRS
 - FKP
 - SSR

- GNSS
 - GPS only
 - GPS+GLONASS
 - Everything

- Datums
 - GDA94
 - GDA2020
Real-Time Data Dissemination

- Application Based Division
 - Survey and everything else except some GIS
 - Agric
 - Some GIS
Real-Time Data Dissemination

• Geographic Based Division
 • Single State License => Following Post Code
 • Most users
 • NSW
 • VIC
 • QLD
 • SA
 • WA
 • TAS
 • NT
 • National License
 • Some users
 • Will need to change port number when move states
• Currently working on an ubiquitous National and possibly Global solutions
 • Change settings automatically when crossing borders
Real-Time Data Dissemination

- **Formats**
 - Mount Point Names
 - MSM
 - RTCM 3.x
 - RTCM 2.3
 - CMR+

- **Correction Methodology**
 - Mount Point Names
 - MAC
 - VRS
 - iMAX
 - Others

- **Datums**
 - Identifier
Fiji CORS – Real Time Data Dissemination

- DNS Name = fj.hxgnsmartnet.com
- Ports
 - Survey = 9101
 - GIS = 9102
 - Agric = 9103
 - MC = 9104
Post-processing Data Dissemination

- RINEX files
 - Multi-GNSS RINEX 3.XX from the new portal
 - RINEX 2.XX from the old portal
- Basic QC information
 - Data completeness
 - Multipath
Post-processing Data Dissemination

• Virtual RINEX Request
 • Complete user input on one single page
 • Minimum user interaction
 • Fully automated generation of optimal virtual, non-physical data
 • Use of Virtual RINEX in Post-Processing has similar advantage like Virtual Reference Station corrections in Real-Time
Post-processing Data Dissemination

- Online PPK Processing Engine
- X-POS Positioning Server
 - Leica Geosystems Infinity Kernel
 - Static or Kinematic
- Customised Processing Parameters
 - Single Base Processing
 - Loose Network Processing – Many base stations
 - Tight Network Processing – Combined network solution
- Detailed Reports
 - With full error ellipses and uncertainty values
HxGN SmartNet Multiple Reference Frames Support

- Maintenance of **multiple reference frames** in one installation
- Send out raw data and RTK corrections in a selected reference frame
 - allowing the rover user position directly in their chosen reference frame without the need for transformation.
HxGN SmartNet Web and App Tools

- HxGN SmartNet web access
 - More transparency into your subscriptions (logins, rovers, status)
HxGN SmartNet Web and App Tools

- HxGN SmartNet app
 - Ideal for checking Site Status & Rover Credentials in the field
 - Network Status & NTRIP port connectivity
 - NTRIP login (username, password)
 - Mount tables
 - Subscription status
HxGN SmartNet Web and App Tools

- HxGN SmartNet app
- Ideal for checking Site Status & Rover Credentials in the field
- Network Status & NTRIP port connectivity
- NTRIP login (username, password)
- Mount tables
- Subscription status
Thank you for your attention!
Vinaka veka levu!

Visit our web page: https://au.hxgnsmartnet.com
Email: Noor.Raziq@Hexagon.com