United Nations/Argentina Workshop on the Applications of Global Navigation Satellite Systems

Supporting GNSS applications in Latin America through the SIRGAS reference frame

1Víctor Cioce, 2William Martínez, 3,4M. Virginia Mackern, 5Roberto Pérez, 6Silvio de Freitas

vcioce@fing.luz.edu.ve

1SIRGAS WGI Chair, Universidad del Zulia (LUZ). Maracaibo, Venezuela
2SIRGAS President, Agencia Nacional de Minería. Bogotá, Colombia
3SIRGAS Vicepresident, Universidad Nacional de Cuyo (UNCuyo). Mendoza, Argentina
4Universidad Juan Agustín Maza. Mendoza, Argentina
5SIRGAS WGII Chair, Universidad de la República (UDELAR). Montevideo, Uruguay
6SIRGAS WGIII Chair, Universidade Federal do Parana (UFPR). Curitiba, Brasil

19 – 23 March, 2018
Falda del Carmen, Córdoba - Argentina
1. Why SIRGAS in Latin America?

• Incompatibilities between classical reference systems together an extensive use of GPS in Latin America were evidents in the 90s.

• Establishing a well-defined reference system in terms of satellite techniques foundations and applications became a requirement (also a challenge) for the regional geo-community.

• In 1993, the first effort to adopt a geocentric reference system brought a new kind of integration and collaboration in Latin America thanks to the SIRGAS Project.

• UN recognized this successful project and recomended to all countries in the region to adopt SIRGAS as reference system.

• Nowadays, SIRGAS is the core geodetic infrastructure for 20 countries and it is based on GNSS.
2. The SIRGAS reference frame

• The SIRGAS reference system is identical to ITRS (International Terrestrial Reference System) by definition being geocentric and consistent at global scale.

• To get access to ITRS its realization is available, i.e. ITRF (International Terrestrial Reference Frame). In this sense, its regional densification for Latin America is provided by SIRGAS.

• At national and local levels, subsequent densifications of the regional frame guarantee GNSS applications refered to SIRGAS.

• SIRGAS counts with three realizations, in all cases given by high-precision geodetic networks.
• A continuously GNSS network is the third (and current) SIRGAS realization:
 – It is called SIRGAS-CON (SIRGAS Continuously Operating Network).
 – It extends homogeneously from Mexico to Argentina and includes IGS stations and national networks.
 – It comprises 420 stations tracking GPS, GLONASS, Galileo, BeiDuo.
 – It is processed on a weekly basis by SIRGAS Analysis Centres providing an up-to-date reference frame.

www.sirgas.org
• About SIRGAS Analysis Centres:
 - DGFI-TUM* (Germany) is the International GNSS Service Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIRGAS) since 1996.
 - Nine Local AnalysisCentres operate in Latin America countries being responsible for national densifications.
 - The network processing is performed in a rigorous way applying currents standards and conventions from IERS* and IGS. Only GPS+GLONASS observations are treated.
 - Two Combination Centres combine (adjusts) individual solutions defining the frame every week.

*Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, http://www.dgfi.tum.de
• Each station is processed by three Analysis Centres according to SIRGAS-WGI distribution plan.

• Only IGS RNAAAC SIRGAS process the so-called SIRGAS-CON C network.

• Local Analysis Centers generates loosely-constrained solutions for SIRGAS-CON N networks.

• The combination of every solution is the contribution for IGS global polyhedron.

• After aligning the individual solutions to the reference frame, station positions are estimated for every week with

 accuracy → ± 1mm for horizontal positions
 ± 3mm for vertical positions
3. Benefits of SIRGAS-CON

SIRGAS-CON

Provides
- an stable and accurate geodetic reference frame,
- accessibility at regional, national and local levels,
- consistency with GNSS orbits.

Supports
- management for geospatial acquisition and treatment,
- referencing for geodata of Latin American countries (differents realizations/epochs),
- worldwide compatibility (all turn around ITRF).

Contributes
- detection and modelling of Global Change,
- the improvement of the reference frame itself,
- with the GGRF (Global Geodetic Reference Frame) implementation according to UN resolutions.

Coordinates estimated (loosely-constrained and aligned to ITRF) within the processing of SIRGAS-CON are key products at weekly and multi-annual basis.
Benefits of SIRGAS-CON

- Weekly determination is strongly necessary in the region:
 - Secular, seasonal, and sporadic events degrade frame accuracy.
 - GNSS is sensitive to these events.
 - Response and evolution of the frame must be considered.

www.sirgas.org
SIRGAS-CON multi-annual determination come from weekly solutions:

- It realizes the long-term SIRGAS reference frame.
- Its kinematic can be monitored.
- Velocities are provided to extrapolate coordinates in time.
- Deformations due to seismic and seasonal effects on reference frame are under study.
4. Applications of SIRGAS as reference frame

→ Remark: every country in the SIRGAS region realices the reference frame (by GPS/GNSS) at certain epoch.

In practice, how the SIRGAS reference frame is implemented?

• Scientific applications:
 – Maintenance of the reference frame.
 – Ionospheric studies.
 – Neutral atmosphere studies.
 – Redefinition of the vertical reference frame, it is SIRGAS-WGIII (Vertical Datum) responsability.

http://cplat.fcaglp.unlp.edu.ar

(Cioce, 2018)

(Sánchez et al., 2017)
Applications of SIRGAS as reference frame

- Practical applications:
 - Positioning for surveying, geomatics, engineering, navigation and more...
 - Developments in Real Time GNSS (network solution mode).
 - SIRGAS-WGII (National Level) is in charge.

(Briceño et al., 2009)
5. Closing remarks

• SIRGAS is the infrastructure for supporting any scientific and technical application based on GNSS technique in Latin America.

• The SIRGAS Continuously Operating Network (SIRGAS-CON)
 – offers the highest (geodetic) precision in the region.
 – guarantees consistency for any geo-database (since its acquisition to final product generation).
 – establishes and recommend guidelines for geodesy developments in members countries.

• Beyond scientific/technical scopes, SIRGAS is also an example of successful international cooperation.

• Some challenge:
 – reinforcement of SIRGAS-CON.
 – incorporation of other GNSS (Galileo, BeiDou...) to SIRGAS-CON.
 – approaching of SIRGAS to other Space Geodesy techniques.
Closing remarks

Visit our web page:

www.sirgas.org

Our next symposium will be in

Aguas Calientes, Mexico

(november-2018)
Thank you very much!

(specially to the Workshop organizers)

questions?

vcioce@fing.luz.edu.ve