

JAXA's Achievements and Future Scenario for Space Exploration

Mar. 10, 2016

International Space Exploration Promotion Team JAXA

JAXA's Recent Achievements for Space Exploration

SELENE (KAGUYA)

Mission Profile:

Launch:Sep. 2007LOI to 100km:Oct. 2007Landing (Hard):Jun. 2009

High Definition TV image

Global gravity distribution

HAYABUSA - World 1st Sample Return from Asteroid -

Return to Earth in 2010

HAYABUSA - Current status of curation activity -

- Samples were collected by a special spatula in the Curation Facility in Sagamihara.
- Scanning Electron Microscope (SEM) observations and analyses (up to Nov. 2010)

- About 1,500 grains were identified as rocky particles.
- Most of them were judged to be of extraterrestrial origin (Asteroid Itokawa).

International Space Station - Testbed for space exploration -

KIBO - Japanese Experiment Module

- The Largest Experiment Module in ISS
- Pressurized and Exposed Experiments Capability

KOUNOTORI - Japanese Logistics Vehicle

- The Largest Logistics Vehicle in ISS
- Successful 5 flights
- 4 more flights planned

Japan's ISS Flight Overview

JEMRMS's Work on the ISS

Standard-class EF Mission:SEDA-AP (JAXA) Air Lock **ExHAM:Material Exposure** Mission i-SEEP: Medium-class EF Misson JEMRMS Standard-class EF Standard-class EF Mission:HREP(NASA) Mission:CALET(JAXA) J-SSOD: Small satellite deployment

UNOOSA-JAXA Cooperation

KiboCUBE

Collaboration between UNOOSA and JAXA to offer small satellite deployment opportunities from Kibo in order to facilitate improvement of space technologies in developing countries. (CubeSat (1U)/ once a year from 2017-2019)

Applications Deadline: 31 March 2016 Contact: hsti-kibocube@unoosa.org

UNITED NATIONS Office for Outer Space Affairs

Future Scenario

Habitation Goals

Lunar Vicinity Mission (<15 years)

Demonstrate the long travel to Mars in deep space

Stay(0G): Crew of 4, 300 days

Human Mars Exploration (25 years later)

Just for technical reference derived from ISECG

LEO

Stay(0G): Crew of 6, Permanent

Technology demonstration for space exploration

Human Lunar Exploration(15 years alter)

Demonstrate habitation capability and surface exploration at low gravity for human Mars mission

Stay(1/6G): Crew of 4, 500 days Utilization: Demo of Fuel Production

Science Goals

Goals for Solar System Science

- Understand how the terrestrial bodies of solar system were formulated
- Understand how the environment of solar system enable the evolution, and produce the life
- Understand its universality and particularity

Science Goals related the Moon

- Understand the solar system evolution
 - Understand chemical stratification of the crust, mantle, and core
 - Discover the sample from the Earth in Hadeon eon
 - Understand diversity and age of igneous activity
 - Understand of the origin of water and volatiles at the poles
- Establishment of crater chronology

Science Roadmap (Moon) - on-going discussion -

Science Goals

- Understand the solar system evolution
 - Understand chemical stratification of the crust, mantle, and core
 - Discover the sample from the Earth in Hadean eon
 - Understand diversity and age of igneous activity
 - Understand of the origin of water and volatiles at the poles
- Establishment of crater chronology

K Knowledge Gap and Criticality for Habitation

Knowledge To be obtained	Knowledge gap (Activities to do)	Criticality			
		Safety	Impact to Architecture	Urgency	Total
Water distribution	In-situ measurement of distribution				
Radiation	Flux data along LET per solar activity				
Safety of regolith	Animal testing by actual regolith				
Terra mechanics data of regolith	In-situ measurement of regolith and terra mechanics model construction using actual traction data				
Contamination of regolith	In-situ measurement of floating regolith by electric field				
Terrain data	None				
Temperature	In-situ continuous measurement at the site				
Sunlit	None				
Plasma	In-situ measurement at the site				
Micrometeoroid	In-situ measurement of micrometeoroid				
Gravity	None				
Criticality Low	Mid High				

Example of Human Geological Exploration

Missions in Near Term

SLIM (Smart Lander for Investigation Moon)

- SLIM is a mission to demonstrate the technology for pin-point soft landing on lunar or planetary surface.
- Planned to be launched in JFY 2019.
- Technology demonstration with Small Spacecraft: (Landing on the point where we want to explore!)
 - Image-based Navigation utilizing Lunar Terrain
 - Autonomous Obstacle Detection
 - Robust Pin-point Guidance
 - Landing Shock Absorber
 - High-performance Propulsion
 - Exploration using Tiny Rovers (option)
- Enable frequent trials of lunar/planetary surface exploration technology
- Precursor of future full-scale lunar or planetary missions

SELENE-RP (under concept study with NASA)

- Spacecraft mass : 5000 kg (Wet)
- Surface payload: 340 kg
- Launch target : 2020 (TBD)

Rover

- Near Infrared Spectrometer
- Neutron Spectrometer
- Oxygen & Volatile Extraction Node
- Lunar Advanced Volatile Analysis

Volatile observation in Polar region

- Radiation monitor
- Seismometer
- Heat flow measurement
- Spectro-microscope camera
- Active X-ray spectrometer____

Landing Module

Propulsion Module

Launch Vehicle

Launch vehicle selection depends on the payloads.

Launch configuration

Other instruments candidates

Lunar surface

Martian Moons eXploration (MMX)

- To be the World first sample return from the Mars system.
- ISAS/JAXA plans as a middle class space science mission to be launched in early 2020s.

Forward Activities

- As the key member of ISECG, JAXA is contributing to the development of the 3rd edition of Global Exploration Roadmap (GER) which will be published in 2017.
- Japan will host the 2nd International Space Exploration Forum (ISEF) in 2017 to promote the political discussion for international space exploration.
- JAXA is promoting advancement of critical technologies for space exploration so that Japan can play a key role in the international space exploration.