

UN/Turkey/APSCO Conference THEME 1: Promoting responsible, peaceful and safe use of outer space

> THE CASE FOR NO WASTE: AUTONOMOUS DECOMMISSIONING DEVICES AS A REQUIREMENT FOR SATELLITES. AN APPROACH FOR EUROPE

PAYLOAD CLEARANCE IN LOW EARTH ORBIT

 \sum

OBJECT CLEARANCE IN LOW EARTH ORBIT

ESA's Annual Space Environment Report 17.07.2019, p.66

TECHNICAL SOLUTION FOR COMPLIANCE WITH POST-MISSION DISPOSAL REQUIREMENTS

- Manoeuvre by station keeping motors of a satellite to re-enter into Earth atmosphere or move to a graveyard orbit:
 - Risk 1: the fuel allocated to the decommissioning manoeuvre is more profitably used to extend the operational life of a satellite;
 - **Risk 2**: if the satellite malfunctions, the station keeping motors may not work;
 - Risk 3: only 60% of the satellite comply with decommissioning regulations, and only 10% of the satellites perform decommissioning manoeuvre.
- Passive propulsion systems:
 - **Risk**: not capable of executing a controlled manoeuvre.

- Manoeuvre by a dedicated autonomous subsystem of a satellite to re-enter into Earth atmosphere or move to a graveyard orbit:
 - Advantage 1: A system that can perform the de-orbit task without continuous guidance from ground, also if the satellite malfunctions;
 - Advantage 2: extremely reduced time of re-entry (within a few hours);
 - Advantage 3: the capability to perform an active and controlled re-entry (that is already a requirement for larger satellites).
 - Risk 1: current technology capabilities depending on the power of the engine and propulsion used;
 - Risk 2: reluctance to implement sustainable practices.

NEED FOR MANDATORY END-OF-LIFE DECOMMISSIONING SUBSYSTEMS FOR SPACE OBJECTS

 Control and mitigate space debris and associated threats in the context of ever-expanding space activities and increased number of space objects in the near-Earth space;

 Meet strategic needs of the European Union for space safety, security and leadership as required by applicable policy and regulatory framework.

- Ensure sustainability of space activities;
- Ensure that near-Earth space does not become as congested as predicted;
- Minimise threats posed by obsolete satellites and space debris in general to the operating spacecraft.

- Sustain safe and secure space environment while executing its space programme;
 - Integrate environmental protection requirements into EU policies and activities;
 - Sustain leadership in the area of **combating space debris**
 - including space situational awareness and space surveillance and tracking, complemented by synergies with initiatives of active removal of space debris and passivation measures;
 - Increase its competitiveness world-wide through support to the European space industry.

EU LEGAL BASIS

EU REGULATORY BASIS

- Article 189 of the Treaty of Lisbon: EU space policy shall promote scientific and technical progress, industrial competitiveness and the implementation of EU policies;
- Space Strategy for Europe (2016): strategic autonomy in accessing and using space in a secure and safe environment;
- Promotion of various space debris mitigation guidelines;
- Principles of procurement stipulating the obligation to satisfy appropriate social and environmental criteria (included in the EC 2018 Proposal for Space Programme Regulation).

 Goal: reshape operational procedures and manufacturing designs to ensure responsible monitoring and control of space objects to effectively reduce generation of debris.

• Means:

- public procurement mechanisms for space objects with clear and assessible requirements regarding integration of independent and autonomous decommissioning devices in procured satellites;
- incorporation of such requirements as award criteria in the relevant tendering procedures;
- evolution of public procurement requirements into industry standards.

MACRO-LEVEL BENEFITS

 For society: new jobs, technology transfer and spin-offs, continuity of spacebased services;

 For the industry: development of a new market, competitive position of domestic/regional industry, stimulation and uptake of innovation, reduction of costs of space operations;

 For Europe: sustained EU leadership that safeguards the strategic interest in secure and safe environment for outer space activities;

 For space and for the future: enhanced environmental performance of satellites; reinforcement of sustainable development goals, *inter alia* by establishing a community realisation that outer space is an environment that must be protected and respected.

- The approach can be useful to space-faring nations who:
 - consider adopting regulatory steps to ensure long-term sustainability of space activities they conduct, authorise or supervise;
 - aim at setting up and implementing an effective space debris mitigation strategy;
 - wish to act as a facilitator of the uptake of innovative and sustainable technologies by introducing procurement mechanisms with requirements to furnish space objects capable of performing controlled and autonomous re-entry manoeuvre at the end of their operational life;
 - recognise sustainable behavior of its space actors.

dorbit.space catherine.doldirina@dorbit.space

THANK YOU!