Consumer Market Overview

- We divide the market into 3 main sectors
 - Handsets: anything with a modem
 - Automotive: In-dash and PND
 - Consumer: Computers, Cameras and other mobile electronics

<table>
<thead>
<tr>
<th></th>
<th>AUTO</th>
<th>HANDSET</th>
<th>CONSUMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 Units</td>
<td>~60M</td>
<td>200M+</td>
<td><4M</td>
</tr>
<tr>
<td>2010 TAM</td>
<td>150M+</td>
<td>~1.5B</td>
<td>500M+</td>
</tr>
<tr>
<td>2010 Units</td>
<td>~70M</td>
<td>300M+</td>
<td>>6M</td>
</tr>
<tr>
<td>Penetration</td>
<td>45%</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>Y on Y Growth</td>
<td>>15%</td>
<td>>50%</td>
<td>>60%</td>
</tr>
</tbody>
</table>
End User Platforms Drive Technology Requirements

- **PND platform in early 2000**
 - Fast start-up and robust urban canyon and foliage performance without benefit of additional sensors
 - SiRFstarIII architecture with 300K correlators and -152 dBm sensitivity enabled mass market acceptance

- **E911 mandate in early 2000**
 - Low power fast start-up and high sensitivity
 - SiRFstarII/III + AGPS and Qualcomm AGPS helped meet the mandate

- **Navigation Services on handsets**
 - Low power “Always On” capability
 - SiRFstarIV + -160dBm Sensitivity provided necessary user experience

- **Broad range of Location Enabled Services on handsets**
 - High availability/low accuracy for social networking
 - High availability/high accuracy for “Pinpoint Mobile Promotions”
 - Requires extension into indoor environments

- **Collision Avoidance and “Self Driven Cars” in automotive**
 - High availability sub-meter accuracy
For the past few years, the key performance requirement from customers was SENSITIVITY
- Keyed by the development of AGPS techniques
 - Once you don’t need data, signal processing takes over
- Drove receiver architectures to accommodate large memories for long integration times at lower powers
 - SiRFstarII on 130nm, III on 90nm, IV on 65nm
 - New satellite signals (pilots) will continue to help

The new upcoming performance requirement is now AVAILABILITY
- Customers expect to receive location information anywhere, all the time
- Additional GNSS systems are necessary, but not sufficient
 - GLONASS provides urban canyon improvement
 - Regional systems like QZSS provide clear improvement
- They do not solve the indoor problem very well
 - Many applications require positioning where GNSS will never work

Increasing availability will drive the continued penetration of GNSS into consumer products
Improving availability

- To improve availability, receiver architectures are moving to hybrid location methodologies
- Radio hybrids: Using signals of opportunity or dedicated infrastructure to augment GNSS
 - Platform level integration keeps incremental costs low
 - Reuse of existing radios
 - Cellular, WiFi, BT
 - Software integration of additional measurements
- Sensor hybrids: Bringing motion sensor technology into personal electronics
 - Proven on automotive platforms with fixed reference frames
 - Far more challenging in handheld environment
 - Advances in MEMS technology opening new doors
- Initial accuracy of solutions likely to be significantly worse than outdoor GNSS
Impact on GNSS architecture

- Very low cost GNSS receivers likely to remain L1 only
 - Driven by the need for large volumes of “good enough” location
 - Key factors are price, cost, size, power and price
- High performance location determination receivers moving to multi-frequency
 - Adding GLONASS bands provides immediate benefit
 - GLONASS requirements in Russia and in 3GPP
 - Radio hybrids require additional frequency support
 - 2.4 GHz worldwide band has strong attraction
 - Extension of Multiband RF/digital CMOS from WiFi/cellular
 - Multi-frequency is more immune to jamming
- Dual-band moderate bandwidth (6MHz) front ends will become the norm
 - L1 will always be the anchor with a second tunable radio for hybrid
 - Silicon can handle the tunability
 - Software can handle the flexible coding schemes
 - Antenna and filter will be the main hurdle at product level
With SENSITIVITY at maximum and AVAILABILITY at 100%, market focus will shift to ACCURACY

- Probably 3-5 years out
- Desire for 1-3m in all conditions will grow
- GNSS architectures will become multi-band, wide bandwidth for maximum performance
Today’s L1 only receivers will continue to gain market share but mostly at the low end.

Focus for next 1-3 years is on creating platforms that provide location everywhere:
- Hardware and software integration of all available information
- Receivers will support more than one relatively narrow frequency bands and one of them will always be L1

Future will see highly flexible, wide bandwidth GNSS receivers for maximum accuracy.