

Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria

OBSERVATION TECHNIQUES

Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria

- 7.1 Overview
 - Observation techniques
 - point positioning using a single receiver
 - differential positioning by transmitting corrections from reference site to rover
 - relative positioning by combining data observed simultaneously at two sites

Observation techniques

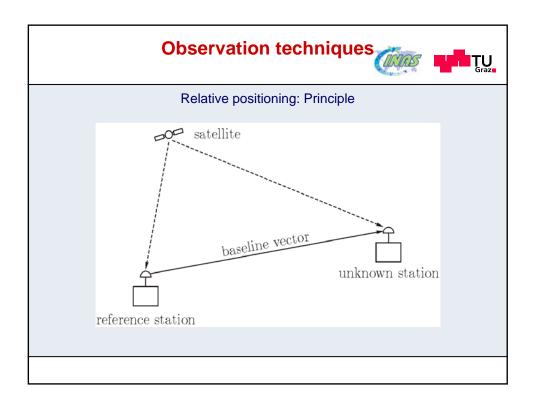
- 7.2 Point positioning
 - 7.2.1 Point positioning with code pseudoranges
 - Code pseudorange model

$$R_{i}^{j}(t) = \%(t) + cc \pm (t)$$

Note that the geometric range (t) contains the unknown coordinates in nonlinear form. Thus, linearization is required.

- 7.3 Differential positioning
 - 7.3.1 General remarks
 - Observing sites
 - Reference site A (base) with known coordinates is usually stationary.
 - Remote site B (rover) to be determined is usually moving.
 - Observables
 - Code pseudoranges (conventional approach)
 - Phase pseudoranges (precise approach)
 - Real-time (or near real-time) technique is denoted Differential GPS (DGPS).

DGPS: Principle satellite differential corrections reference station rover


- 7.4 Relative positioning
 - 7.4.1 General remarks
 - Relative positioning is the determination of an unknown point B with respect to a known point A via the baseline vector <u>b</u>_{AB}.
 - $\frac{\mathbf{X}_{B}}{\mathbf{X}_{B}} = \frac{\mathbf{X}_{A}}{\mathbf{X}_{A}} + \frac{\mathbf{b}_{A}}{\mathbf{b}_{A}}$

Observation techniques

- Baseline determination
 - Simultaneous observation of identical satellites at the two endpoints of the baseline.
 - Linear combination of the observed code ranges or phase ranges.
 - Usually, only phase ranges are considered explicitly.

- 7.5 Precise Point Positioning (PPP)
 - is a technique for highly precise positioning with only one GNSS receiver
 - 1997 for the first time used in relation with GPS
 - cm accuracy can be achieved under optimal circumstances (but not in real time)