Status of ARAIM

S. Wallner
ICG 6, Tokyo, Japan
05/09/2011
ARAIM

- Classic
- Evolving

➔ Evolve process

- Rebalance
- Consic

ESA Presentation | ESA UNCLASSIFIED
ARAIM Context

- **SBAS Single-constellation, single-frequency**
 - 2018

- **SBAS Multi-constellation, single-frequency**
 - 2025

- **SBAS Multi-constellation, dual-frequency**
 - 2027

- **ARAIM Multi-constellation, dual-frequency standard preparation**
 - 2020

- **ARAIM standard preparation**

- **Aircraft avionics upgrades**
 - 2018

ESA Presentation | S. Wallner | ICG 6, Tokyo, Japan | 05/09/2011 | NAV-EF | Slide 3

ESA UNCLASSIFIED – For Official Use
Several studies identify the potential of ARAIM for PA procedures.

- Vertical Protection Level:
 - 99.9% probability of missing protection at less than 5 m.
 - 99% probability of missing protection at less than 10 m.
 - 95% probability of missing protection at less than 12 m.
 - 90% probability of missing protection at less than 15 m.
 - 80% probability of missing protection at less than 17.5 m.
 - 60% probability of missing protection at less than 20 m.
 - 30% probability of missing protection at less than 35 m.
 - 10% probability of missing protection at more than 50 m.

- Longitude (deg) and Latitude (deg) with contour lines indicating protection levels.

- Performance parameters:
 - SISE/URE: 0.25 m
 - URA: 0.5 m
 - Nom. Bias: 0.1 m
 - Max. Bias: 0.75 m
 - P_{const}: 1×10^{-7}
 - P_{sat}: 1×10^{-5}
List of Threats

Nominal errors
- Nominal Clock and ephemeris errors
- Nominal signal deformation errors
- Antenna bias
- Tropospheric errors
- Code noise and multipath

Narrow failure errors
- Clock and ephemeris estimation errors
- Signal deformations
- Code-carrier incoherency

Wide failure errors
- Induced by inadequate manned operations
 - Update of operational G/S
 - Commanding of S/C
- Induced by G/S facilities
 - Nav message generation and uplink
 - S/C and constellation control
- Externally induced
 - EoP and EoPP
 - Type A (Earth motion changed since update)
 - Type B (EoPPs in OD process bad and not detected in GNSS ground segment)

To each threat a dynamic level can be associated
- Threat mitigation needs to involve 3 levels
 - GNSS ground segment
 - Independent ARAIM ground segment
 - User receiver
- Combination of 3 levels needs to eliminate the integrity threats to extent compliant with required integrity risk
- Allocation of threats to mitigation levels according to threat dynamics
 - All high dynamic threats to be mitigated at user level
 - Low dynamic threats to be mitigate at user **and** ground segment level
 → Ground segment needs not to react to threats within the TTA of 6 s
Independent ARAIM Ground Monitoring

- GNSS ground segments may not be designed according to civil aviation safety requirements
- Independent ARAIM ground monitoring network allows for high level of trust
- Independent ARAIM ground monitoring network to be designed according the appropriate Design Assurance Level (DAL), DAL-B for LPV-200
Integrity Support Message Data

- ARAIM ground monitoring network to provide relevant ARAIM algorithm input to user → Integrity Support Message (ISM)
 - Signal in Space Accuracy (SISA)/User Range Accuracy (URA)
 - Signal in Space Error (SISE)/User Range Error (URE)
 - Nominal and maximal biases
 - Probability of a single satellite fault (P_{sat})
 - Probability of a constellation wide fault (P_{const})
- Significant reduction of latency requirement of ISM compared to SBAS
- ISM requirements highly interrelated with ARAIM algorithm performance, constellation performance and threat allocation; theoretical analyses and assessments still ongoing
- Modifications at avionics level required to support ARAIM in the future to be kept to minimum extent possible
- Reuse of already available data links
 - L-Band RNSS allocation
 - GNSS
 - SBAS L5
 - VHF Aeronautical Mobile Route Services (AMRS) Allocation
 - ISM dissemination at gate dispatch
Conclusions

- ARAIM identified as promising concept to enable approaches with vertical guidance
- Thorough implementation required
- List of threats identified, threat models to be developed
- ARAIM ground monitoring network
 - Needs not to react to threats within the TTA of 6 s
- Overall ARAIM system needs to be compliant to appropriate Design Assurance Level
- Integrity Support Message (ISM) to provide ARAIM user algorithm with required input