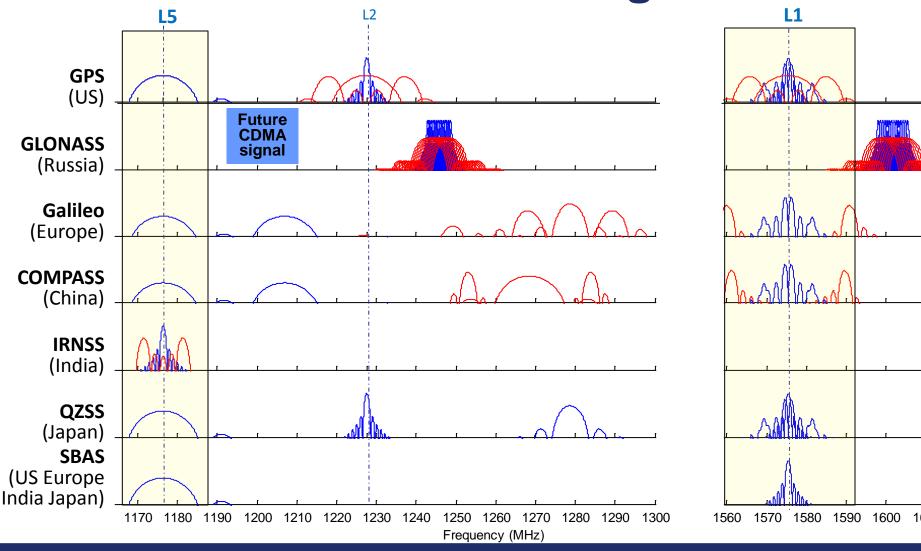
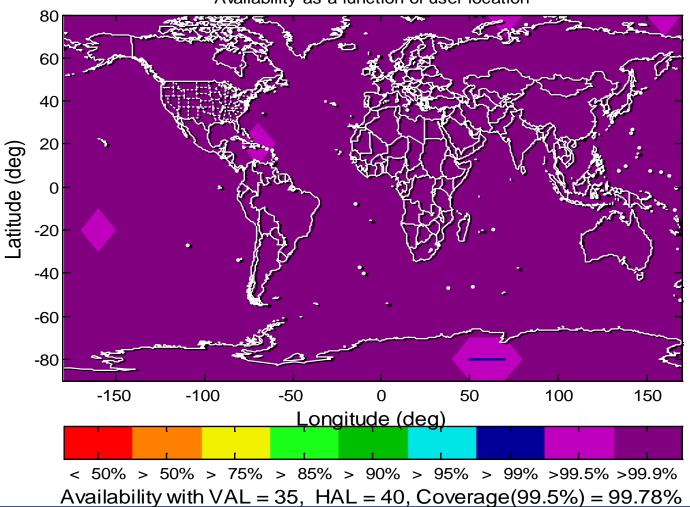
Enabling
Multi-Constellation
Advanced Receiver
Autonomous Integrity
Monitoring (ARAIM)

Leo Eldredge GNSS Program Manager FAA Navigation Services



ARAIM Overview

- GNSS Evolutionary Architecture Study (GEAS)
 Phase II Report Recommendations
 - Implementation of dual frequency SBAS
 - Development of architectures and algorithms for Advanced Receiver Autonomous Integrity Monitoring (ARAIM), based on
 - Dual frequency ARNS (L1 and L5) signals
 - At least two independent GNSS core constellations for civil aviation.
- GEAS determined ARAIM could enable worldwide LPV-200 performance, provided:
 - Measurement redundancy and geometric diversity are assured
 - Performance of specific parameters for the core GNSS constellations are assured

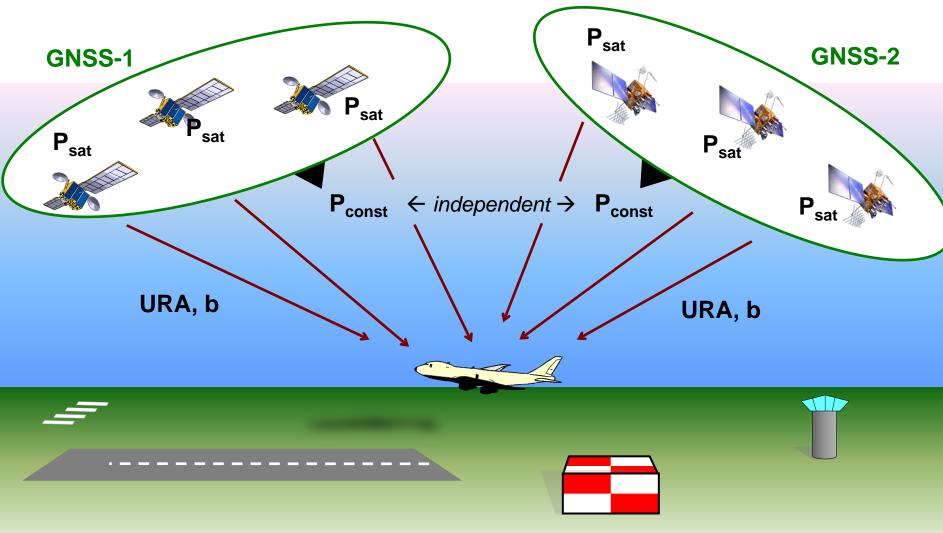

Current International Signal Plans

Dual Frequency ARAIM With 27 GPS + 27 Other GNSS

Availability as a function of user location

Allow other constellations...

Robust to weak constellations?


$$URA = 1m$$

$$P_{sat} = 10^{-3}$$

$$P_{const} = 10^{-6}$$

ARAIM Parameters

Integrity Support Message Parameters

- User Range Accuracy → 'URA'
 - Standard deviation of the overbounding Normal distribution for signal-in-space errors
- Bias parameter → 'b_{max}'
 - May be needed to bound potential non-zero mean error distributions
- Fault state probability (fault-rate × time-to-notify) → 'P_{sat}'
 - Needed for faults that <u>are</u> independent between satellites
- Probability of constellation-wide fault → 'P_{const}'
 - For multiple faults that are <u>not</u> independent between satellites
 - Example is Earth Orientation Parameter (EOP) fault undetected by GNSS ground system

Worldwide Coverage Sensitivity

less accuracy (URA)

27 GPS + 27 Other GNSS

10-5

10-4

10-3

constellation P_{sat}/URA .5 m 1.5m $3.5 \, \mathrm{m}$ 1 m 2 m 3 m 4 m reliability Less 42.9% 10-5 100% 100% 100% 100% 100% 3.4% satellite 0 100% 100% P_{const} < 10⁻⁸ 10-4 100% 100% 100% 0 reliability 100% 100% 100% 99.6% 6.6% 0 10^{-3} 0 10-5 100% 100% 95.0% 51.5% 0 0 10-4 100% 100% 95.0% 51.5% 0 GPS? $P_{const} = 10^{-6}$ 10-3 100% 100% 95.0% 51.3% 0 0 0

0.1%

0.1%

0.1%

0

0

0

0

0

0

 P_{sat} = Prob. of satellite fault

100%

100%

100%

98.5%

98.5%

98.5%

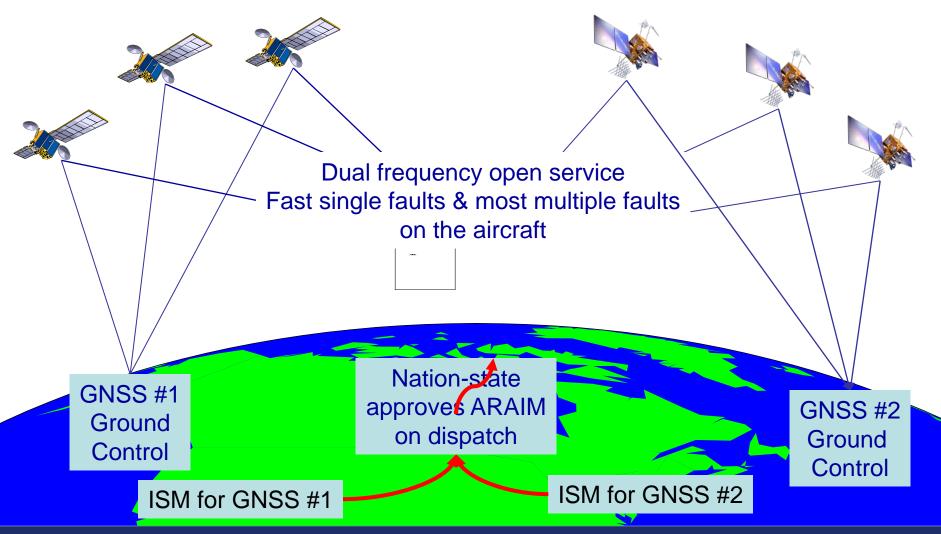
79.2%

79.2%

79.2%

FALAVIATO P

0

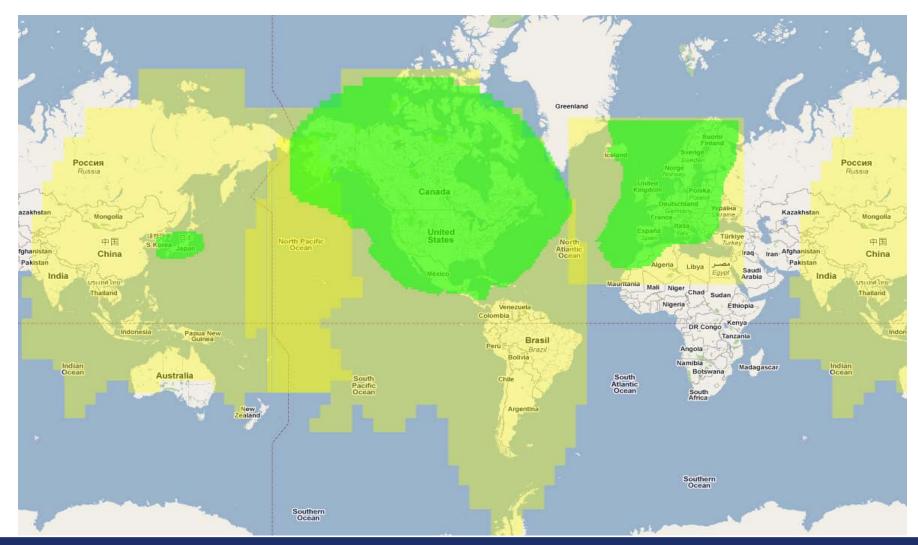

0

GPS?

 $P_{const} = 10^{-4}$

Less

Integrity Support Message (ISM)



Multi-Constellation GNSS Operational Considerations

- Will use of the host GNSS be required for flight in the host region?
 - GLONASS required to fly in Russia?, Galileo in Europe?, Compass in China?
 - GPS universally accepted as second GNSS constellation?
 - Pick any Two GNSS Constellations?
- Who will compute and assure the ISM?
 - GNSS service provider broadcast on core integrity channel?
 - SBAS/ARAIM service provider and regulatory authorities for the applicable sovereign national airspace?
- Geodetic reference frame alignment considerations
 - 3 dimensional waypoint for LPV-200 approaches using multiconstellation ARAIM

Combined SBAS Snapshot

SBAS with ARAIM

- SBAS GEOs can provide corrections and monitoring to keep the URE and fault-free UDRE small
- SBAS can identify and eliminate common mode threats such as EOP
- ARAIM can extend the required TTA and handle some multiple fault cases for SBAS
 - Must meet low probability for TTA used by ARAIM
- SBAS then mainly needs to assure the fault-free performance
 - Easier than 10⁻⁷ integrity within 6 sec.

URA Commitments

- Is it likely GNSS providers will commit to URAs of .25 .5m in their performance standards?
 - Commitment of .25m would typically mean that nominal performance was ~.06 (4:1 margin)
- Should the L5 SBAS/ARAIM signal also include corrections to assure URAs to the desired level?
 - Avionics-based ARAIM detection of fast <u>clock</u> faults
 - Avionics-based 2RF estimation of <u>ionosphere</u> delays
 - Long term corrections and UDRE for <u>ephemeris</u> errors

Multi-Constellation SBAS w/ARAIM Implementation Considerations

- Dual frequency GNSS minimum user for ARAIM
- Universal SBAS message set is needed with room for growth
 - PRNs for all global and regional GNSS
 - PRNs for all existing and planned SBAS
 - Sufficient margin for growth
 - Ensure <u>all</u> PRNs useable to avoid mistakes from L1 experience
 - SBAS providers should have latitude to augment all GNSS if desired
- If Multi-constellation timing offset corrections are be needed
 - To what time reference will the offsets be aligned?

Potential SBAS PRN Mask

L1 SBAS SARPS	Current
GPS	38
GLONASS	24
Spare	57
Total GNSS/Other	119
SBAS	19
Spare	72
Total SBAS	91
Total PRNs	210

L5 Allocations	Maximum
GPS (Current)	63
GLONASS	63
Galileo	63
Compass	63
QZSS	5
RNSS	5
GNSS Growth	17
Total GNSS/Other	279
MSAS	5
WAAS	5
EGNOS	5
GAGAN	5
SDCM	8
SBAS Growth	17
Total SBAS	45
Total PRNs	324

Summary

- Four basic parameters are needed to enable ARAIM
- A common understanding of these parameters must be developed and agreed upon by the service providers for interoperability
- GNSS service providers need to include these parameters in Performance Standards
- ISM is a mechanism to deliver these parameters to users
- Delivery of ISM could be from multiple sources
- SBAS needs a strategy to broadcast ISMs for Multi-Constellation