Optimising the Minimal Detectable Bias in GNSS Positioning Fault Detection

Nathan Knight and Jinling Wang

The School of Surveying and Spatial Information Systems, The University of New South Wales, Sydney, Australia *Jinling.Wang@unsw.edu.au* www.gmat.unsw.edu.au/wang

ICG Group B Meeting, Shanghai, 17 May 2011

Credibility and Ubiquitous Positioning

• Ubiquitous Positioning, Indoor Navigation and Location Based Service

- Need To Be Credible -

- But what does this mean?
 - Positioning perspective
 - Precision, DOPs, Confidence Regions...
 - Reliability/Integrity, MDBs, PLs, External Reliability...
 - Maps perspective
 - Accuracy, Precision, Reliability....
 - Currency...

Credibility From Positioning Perspective

• Want meaningful information without being misleading

• But also desire ubiquitous positioning

Credibility From Geodesy Perspective

- Creditability provided in Reliability
- Procedure
 - Design measurements, geometry to achieve Internal and External Reliability requirements
 - Take measurements
 - Least Squares and outlier testing
 - Remeasure
- Procedure driven to provide reliability at lowest cost

Credibility From Aviation Perspective

- Creditability provided in Integrity/RAIM
- Procedure
 - Use geometry as is
 - If unsatisfactory use other positioning technologies
- Driven by many requirements to be satisfied
 - Integrity
 - Continuity
 - Availability

Credibility From Ubiquitous Perspective

- Credibility from a more general ubiquitous perspective
- Procedure
 - Use geometry as is
 - If unsatisfactory may relax requirements
- Driven to provide a position that always has the required integrity

The Conventional Outlier Test Method

• Set
$$\alpha$$
 first, $\alpha = 1 - \sqrt[n]{1 - P_{FA}}$

•
$$w_i = \frac{\boldsymbol{h}_i^{\mathrm{T}} \boldsymbol{P} \boldsymbol{Q}_v \boldsymbol{P} \boldsymbol{\ell}}{\sigma_0 \sqrt{\boldsymbol{h}_i^{\mathrm{T}} \boldsymbol{P} \boldsymbol{Q}_v \boldsymbol{P} \boldsymbol{h}_i}} \sim \mathrm{N}(0,1)_1$$

 $\beta = P_{MD}$

•
$$\delta_o \approx N(0,1)_{1-\alpha/2} - N(0,1)_{\beta}$$

• $\chi^2_{1-\alpha,1} = \chi^2_{\beta,1,\delta_0}^2$

The Conventional Outlier Test Method

•
$$\delta = E \left\{ \frac{\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{Q}_{v} \boldsymbol{P} \boldsymbol{\ell}}{\sigma_{0} \sqrt{\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{Q}_{v} \boldsymbol{P} \boldsymbol{h}_{i}}} \right\} = \frac{\sqrt{\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{Q}_{v} \boldsymbol{P} \boldsymbol{h}_{i}} \nabla s_{i}}{\sigma_{0}}$$

•
$$MDB_{i} = \nabla_{o} s_{i} = \frac{\delta_{o} \sigma_{0}}{\sqrt{\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{Q}_{v} \boldsymbol{P} \boldsymbol{h}_{i}}}$$

•
$$PL_{i} = \frac{\sqrt{\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{A} (\boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{A})^{-1} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} (\boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{A})^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{h}_{i}}{\sqrt{\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{Q}_{v} \boldsymbol{P} \boldsymbol{h}_{i}}} \sigma_{0} \delta_{o}$$

- Final PL is the maximum PL_i
- Position has integrity when PL<AL

The Optimised Outlier Testing Method

•
$$PL_i = \frac{\sqrt{h_i^T PA(A^T PA)^{-1} C^T C(A^T PA)^{-1} A^T P h_i}}{\sqrt{h_i^T P Q_v P h_i}} \sigma_0 \delta_0$$

• **Set PL**_i = **AL**
• $\delta_i = \frac{AL \sqrt{h_i^T P Q_v P h_i}}{\sigma_0 \sqrt{h_i^T P A(A^T P A)^{-1} C^T C(A^T P A)^{-1} A^T P h_i}}$
• $\beta = P_{MD}$
• $\chi^2_{1-\alpha_i,1} = \chi^2_{\beta,1,\delta_i^2}$

The Optimised Outlier Testing Method

- Use horizontal and vertical α_i in outlier test $w_i = \frac{h_i^T P Q_v P \ell}{\sigma_0 \sqrt{h_i^T P Q_v P h_i}} \sim N(0,1)_{1-\alpha_i/2}$
- If horizontal tests pass then horizontal integrity
- If vertical tests pass then vertical integrity
- Continuity probability can also be estimated via P_{FA} as

$$P_{FA} \le 1 - \prod_{i=1}^{n} (1 - \alpha_i)$$

Reductions in PL as α Increases

- Based on a Single Bias
- $0 < PL_i < \infty$ $0 < \delta_i < \infty$ $0 < \alpha_i < 1 \beta$

Example with 24hrs of GPS Data

- Set HAL=25m and VAL=50m
- Set β=0.2
- In conventional FDE set P_{FA}=0.01

Horizontally Based on a Single Bias

A position with integrity 99% of the time

SSIS School of Surveying and Spatial Information System

Vertically Based on a Single Bias

A position with integrity only 65% of the time

A position with integrity 99% of the time

The Conventional Outlier Test Method

The Conventional Outlier Test Method

- PL = $\sqrt{\nabla_{o}S^{T}H^{T}PA(A^{T}PA)^{-1}C^{T}C(A^{T}PA)^{-1}A^{T}PH\nabla_{o}S}$
- No unique PL Desire maximum PL
- $PL_{Max} = \sigma_0 \sqrt{\delta'_o \lambda_{Max}}$ $(\boldsymbol{U}^T)^{-1} \boldsymbol{H}^T \boldsymbol{P} \boldsymbol{A} (\boldsymbol{A}^T \boldsymbol{P} \boldsymbol{A})^{-1} \boldsymbol{C}^T \boldsymbol{C} (\boldsymbol{A}^T \boldsymbol{P} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{P} \boldsymbol{H} \boldsymbol{U}^{-1} \boldsymbol{u} = \lambda \boldsymbol{u}$ $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{H}^T \boldsymbol{P} \boldsymbol{Q}_v \boldsymbol{P} \boldsymbol{H}$
- Final PL is the maximum PL_{Max}
- Position has integrity when PL<AL

The Optimised Outlier Testing Method

- If horizontal tests pass then horizontal integrity
- If vertical tests pass then vertical integrity

Reductions in PL as α IncreasesSingle BiasTwo Biases

Horizontally Based on Two Biases

No position with integrity

A position with integrity 87% of the time

Vertically Based on Two Biases

A position with integrity only 2% of the time

A position with integrity 88% of the time

Conclusion

- Ubiquitous positioning desires to have a position that always has a defined integrity
- The way to achieve this is via setting PL=AL first then determine α
- PLs can be significantly reduced by changing α
- The results have showed a significant increase in the percentage of time that a position with a given integrity can be provided, particularly for two biases

Thank you for your attention!

