Authentication of GNSS OS Signals through the Location Assurance Service Provider

13/03/2012

Miguel Martins
itrust consulting
martins@itrust.lu
Agenda

• Motivation
• Background
• Overview of the project
• Current status
• Conclusion

Objectives

• Present an overview and current status of the LASP project.
Motivation
➤ Avoid the GNSS threats

Threats:

• Jamming: intentional interference to prevent receivers from tracking GNSS signals;

• Spoofing: broadcast of fake GNSS-like signals;

• Meaconing: reception, delay and re-broadcast of GNSS signals.

Avoid the GNSS threats
Motivation

Business opportunity for innovative services

Examples of services relying on GNSS:

• Tracking of dangerous or high value goods
• Journalists in war scenarios
• Location based billing
• PAYD services:
 • Tolls – LKW-Maut (truck-toll in Germany)
 • Insurance schemes
• LBS smartphone applications
Background

Past Studies

- **LocProof**: ESA study to define the concept
 ➔ Functionality and security design

- **LocAuth**: LuxLAUNCH study of business opportunity
 ➔ LASP service can be a real business opportunity for Luxembourg
Overview

Location Assurance Service Provider

Administrative Details

- ESA funded project
- Duration: 2 years, 2011-2012
- Sub-Contractor: University of Luxembourg/SnT

Project Objectives

- Specify and implement a prototype of a localisation authority
 - Perform security checks before certifying a localisation
 - Establish secure communication protocol between LAP and user device
- Consider privacy issues (like anonymity) for privacy-enhanced services
- Demonstrate and disseminate the service
Overview

Technical issues

Security checks:

• UD sends time-stamped positions as well as navigation and intermediate data

• Security checks are algorithms that verify if signals are integral (not intentionally modified):
 • Local: single observation
 • Central: continuous observation or observation of multiple receivers

• Result is an assurance level. It depends on the data available
Current status

- Several security checks are implemented (Doppler, power, clock, navigation data,…);
- Communication client/server is working;
- A light version is available for Android.
Current status

- Android application

- Can be installed on any GNSS-enabled Android

- Only a subset of security checks can be performed
Current status

Results

Achievements:

- Preliminary results are encouraging;
- Selective manipulations are reflected in the final assurance level;
- Successful detection of meaconing attacks simulated with a signal repeater (delay ≈ 80ns)

Next Steps:

- Finalise overall integration;
- Do tests at ESA with signal simulators;
- Parameter tuning.
Current status → Privacy

- User’s position is private information
- Leak towards the LAP is not problematic because it intends to be a TTP.
- Leak of a certified position towards the LBSP needs to be addressed.
- A proposed solution lets the user control the transmitted accuracy.
Conclusion:
- Localisation assurance is possible
- Preliminary tests are encouraging

Business roll-out:
- Itrust envisages the deployment of the LASP service
- Looking for partners that need some kind of localisation assurance

Technical challenge:
- Show me your spoofers!
Questions & Discussion...

Thank you for your attention!

Miguel Martins
martins@itrust.lu
About itrust consulting

Versatiles services

Consultancy
- Security policies and technical expert reports
- Information risk analysis (Trick-Light)

Audit
- Hacking, intrusion test (TRICK-Tester), Computer forensics
- Process certification and data protection
- ISO 27001, ISO 27799, ISO 15408...

Training

R&D – Technical and security design
- ESA: Secure Galileo localisation
- Celtic, ITEA2 ; FP-7: MICIE, LiveLine, CockpitCI, i-GOing
- Information sharing tools for risk prediction, security assurance, management
- LuxLAUNCH innovation studies on LBS, localisation, certification, M2M,…

Multisourcing
- Security officer assistance, Security as a Service