Interoperability & Spectrum Access are Key NASA/SCaN Requirement Drivers

1. SCaN shall develop a **unified** space communications and navigation network infrastructure capable of meeting **both robotic and human** exploration mission needs.

2. SCaN shall implement a **networked** communication and navigation infrastructure across space.

3. SCaN infrastructure shall provide the **highest data rates technically and financially feasible** for both robotic and human exploration missions.

4. SCaN shall assure data communication protocols for Space Exploration missions are **internationally interoperable**.

5. SCaN shall **provide** the end space communication and navigation infrastructure on **Lunar and Mars surfaces**.

6. SCaN shall provide **anytime/anywhere** communication and navigation services **as needed** for Lunar and Mars human missions.

7. SCaN shall continue to **meet its commitments** to provide space communications and navigation services to existing and planned missions.
NASA’s Evolving Comm & Nav Networks Extend the Reach of GPS/GNSS

The current NASA space communications architecture embraces three operational networks that collectively provide communications services to supported missions using space-based and ground-based assets

Near Earth Network - NASA, commercial, and partner ground stations and integration systems providing space communications and tracking services to orbital and suborbital missions

Space Network - constellation of geosynchronous relays (TDRSS) and associated ground systems

Deep Space Network - ground stations spaced around the world providing continuous coverage of satellites from Earth Orbit (GEO) to the edge of our solar system

NASA Integrated Services Network (NISN) – no longer part of SCaN – managed by OCIO; provides terrestrial connectivity
International Interoperability Can Benefit from NASA’s Worldwide Networks

- Human Spaceflight Missions
- Sub-Orbital Missions
- Earth Science Missions
- Space Science Missions
- Lunar Missions
- Solar System Exploration

[Map and images of various NASA facilities and missions]
Evolution of SCaN Integrated Comm & Nav Architecture

SCaN Services Provide:
- Integrated service-based architecture
- Space internetworking (DTN and IP)
- International interoperability
- Significant increases in bandwidth

- Integrated service-based architecture
- Space internetworking (DTN and IP)
- International interoperability
- Significant increases in bandwidth

Lunar Relay
Lunar Relay Payload (potential)
Titan
Saturn
Neptune
Uranus
Pluto
Charon
Jupiter
Mars
Venus
Mercury
Sun
NISN
MCC
2014-2015 Add:
• Standard Services and Interfaces
• Delay Tolerant Networking
• Deep Space Antenna Array
• Lunar Optical Pathfinder (LADEE)
• TDRS K, L
• Increased microwave link data rates

2018 Add:
• Uniform commitment process via Customer Service Management Element
• Space Internetworking
• Lunar Comm Relay Demo and ISS Terminal
• Near Earth Optical Initial Capability
• TDRS M
• Lunar Relay Payload (potential)

2023 Add:
• Space Based Relay Initial Capability
• Enhanced Optical Initial Capability
• Deep Space Optical Relay Pathfinder
• Lunar Relay Initial Capability to Support Exploration

2025 Add:
• Deep Space Optical Initial Capability
• Space Internetworking throughout Solar System
• Significant Increases in Bandwidth
• Retirement of Aging RF Systems
• Mars Orbiting Data Relay Satellite Capability
• Possible streaming video from Mars

SCaN CSME
NISN
MCC
MOCS
Deep Space Optical Relay Pathfinder
Lunar Antenna Array
Lunar Com Relay Demo
LADEE
SCaN
NASA’s Role: U.S. PNT / Space Policy

• The 2004 U.S. Space-Based Positioning, Navigation, and Timing (PNT) Policy tasks the **NASA Administrator**, in coordination with the Secretary of Commerce, **to develop and provide requirements for the use of GPS and its augmentations to support civil space systems**

• The 2010 National Space Policy reaffirms PNT Policy commitments to GPS service provisions, international cooperation, and interference mitigation

• NASA is engaging with other space agencies at venues such as the ICG and IOAG to seek similar benefits from other PNT constellations to maximize performance, robustness, and interoperability for all
GPS PNT Services Enable:

• **Real-time On-Board Navigation:** Enables new methods of spaceflight ops such as precision formation flying, rendezvous & docking, station-keeping, GEO satellite servicing

• **Attitude Determination:** Use of GPS enables some missions to meet their attitude determination requirements, such as ISS

• **Earth Sciences:** GPS used as a remote sensing tool supports atmospheric and ionospheric sciences, geodesy, and geodynamics -- from monitoring sea levels and ice melt to measuring the gravity field

ESA ATV 1st mission to ISS in 2008
JAXA's HTV 1st mission to ISS in 2009
Commercial Cargo Resupply (Space-X & Cygnus), 2012+
Unique Science Applications Enabled by GPS/GNSS – i.e., Radio Occultation, etc.,

IONOSPHERE
- High resolution 3D ionospheric imaging
- Ionospheric structure & dynamics
- Onset, evolution & prediction of Space storms
- TIDs and global energy transport
- Precise ion cal for OD, SAR, altimetry

OCEANS
- Significant wave height
- Ocean geoid and global circulation
- Surface winds and sea state
- Structure, evolution of the deep interior
- Structure & evolution of surface/atmosphere boundary layer

SOLID EARTH
- Earth rotation
- Polar motion
- Deformation of the crust & lithosphere
- Location & motion of the geocenter
- Gross mass distribution
- Shape of the earth

ATMOSPHERE
- Climate change & weather modeling
- Global profiles of atmosphere density, pressure, temp, and geopotential height
- Structure, evolution of the tropopause
- Atmospheric winds, waves & turbulence
- Tropospheric water vapor distribution

IONOSPHERE
- Ionospheric structure & dynamics
- Iono/thermo/atmospheric interactions
- Onset, evolution & prediction of Space storms
- TIDs and global energy transport
- Precise ion cal for OD, SAR, altimetry

Gravity Field Measurements (GRACE Mission)
- Ionospheric Remote Sensing using GPS Occultation

Ocean Topography
• GPS is a cornerstone to an evolving GNSS constellation enterprise that serves all humanity

• NASA is working with the U.S. Air Force and National Space-based PNT EXCOM to enhance GPS capabilities while making it more robust for all users, including:
 - Defining performance parameters for a GPS/GNSS Space Service Volume (SSV)
 - Implementing Laser Retro-reflector Arrays (LRAs) on GPS III to perform Satellite Laser Ranging (SLR)
 - Developing & fielding multi-GNSS receivers
 - Expanding the reach of GPS/GNSS signal monitoring networks
 - Protecting Radionavigation Satellite Service (RNSS) spectrum

• These collaborative efforts are strongly in sync with the goals and objectives of the ICG and its members to maximize GNSS benefits for all
Augmenting GPS in Space with TASS

- **TDRSS Augmentation Service for Satellites (TASS)**
- **Supports all space users**
 - Communication channel tracking / ground-in-the-loop users
 - GNSS-based on-board autonomous navigation

1) User spacecraft acquires GNSS signals
2) A ground network monitors GNSS satellites
3) GEO Space Network satellites relay GNSS differential corrections to space users on an S-band signal (demo signal since 2006)
4) Evolved TASS signal incorporates additional parameters
 - GNSS integrity Information
 - Tracking Satellite Information (health, ephemerides, maneuvers)
 - Space Weather Data
 - Solar Flux Data
 - Earth Orientation Parameters
 - User-specific Command Fields
 - Pseudorandom Noise (PRN) ranging code
Goddard Space Flight Center

- Navigator GPS Receiver: GPS L1 C/A
 - Flew on Hubble Space Telescope SM4 (May 2009), planned for MMS, GOES, GPM, Orion (commercial version developed by Honeywell)
 - Onboard Kalman filter for orbit/trajectory estimation, fast acquisition, RAD hard, unaided acquisition at 25 dB-Hz
- Possible Future Capabilities
 - High-sensitivity Signal Acquisition and Tracking:
 - Acquisition thresholds down to 10-12 dB-Hz
 - Applicable to HEO, lunar, and cis-lunar orbits
 - Reception of New GPS Signals: L2C and L5
 - GPS-derived Ranging Crosslink Communications
 - Developed for MMS Interspacecraft Ranging and Alarm System (IRAS) to support formation flying
 - Features S-band communications link with code phase ranging, used in formation flying

Jet Propulsion Laboratory

- BlackJack Flight GPS Receiver: GPS L1 C/A, P(Y) and L2 P(Y)
 - Precise orbit determination (JASON, ICESat, SRTM missions)
 - Occultation science (CHAMP, SAC-C, FedSat, 2 GRACE, 6 COSMIC)
 - Gravity field (CHAMP, GRACE)
 - Surface reflections (SAC-C, CHAMP)
 - 18 BlackJack receivers launched to-date
- IGOR GPS receiver: Commercial version from Broad Reach Engineering
- CoNNeCT Software Defined Radio: GPS L1 C/A, L2C, L5
- Tri GNSS Receiver (TriG) is under development: GPS L1, L2(C), L5, Galileo E1, E5a, GLONASS (CDMA)
 - Features: open-loop tracking, beam-forming
 - 2-8 antennas, 36 channels, RAD hard
 - Engineering models: 2011, production: 2013
SCaN represents NASA at international fora related to space communications & navigation issues, including:

- Interoperability Plenary (IOP)
 https://interoperabilityplenary.org/home.aspx

- Interagency Operations Advisory Group (IOAG)
 www.ioag.org

- Space Frequency Coordination Group (SFCG)
 https://www.sfcgonline.org/home.aspx

- Consultative Committee for Space Data Systems (CCSDS)
 http://public.ccsds.org/default.aspx

- International Telecommunications Union (ITU)

- International Committee on Global Navigation Satellite Systems (ICG)
At least four GNSS satellites in line-of-sight are needed for on-board real-time autonomous navigation
- GPS currently provides this up to 3,000 km altitude
- Enables better than 1-meter position accuracy in real-time

At GSO altitude, only one GPS satellite will be available at any given time.
- **GPS-only** positioning at GSO is still possible with on-board processing, but only up to approx. 100-meter absolute position accuracy.
- **GPS + Galileo** combined would enable 2-3 GNSS sats in-view at all times.
- **GPS + Galileo + GLONASS** would enable at least 4 GNSS sats in-view at all times.
- **GPS + Galileo + GLONASS + Beidou** would enable > 4 GNSS sats in view at all times. This provides best accuracy and, also, on-board integrity.

However, this requires:
- Interoperability among these the GNSS constellations; and
- Common definitions/specifications for the Space Service Volume (3,000 km to GSO altitude)

≥ 4 GPS satellites in line-of-sight here (surface to 3000 km)

... but, if interoperable, then **GPS + Galileo + GLONASS + Beidou** provide > 4 GNSS sats in line-of-sight at GSO.
Challenges & Issues for Emerging GNSS Services

- Challenged by global growth of all types of wireless devices
 - Unwanted emissions from adjacent bands can raise the RNSS noise floor
 - Excessive power in adjacent bands can overload RNSS receivers (or any other receiver)
 - In the past, incompatible mobile satellite services and low-powered devices have unsuccessfully sought to operate across restricted RNSS bands
 - Industry-level agreements (e.g., low-power digital TV, MSS ATC) can and have restrained unwanted emissions

- Protection of GNSS spectrum by just one country is inadequate if commercial devices that cause harmful emissions proliferate
 - Pressure for L-band spectrum to support mobile broadband and other innovations, e.g., unlicensed devices, cloud computing, software radios, etc.
 - International use of unlicensed repeaters and licensed in-band pseudolites, intentional and unintentional spoofers
 - Intergovernmental coordination of space-based L-band radars for EESS applications
 - Industry-level negotiations, interagency agreements, and international regulatory cooperation will be needed to sustain the RNSS bands
Options to Further Protect GNSS Spectrum

Protection from In-band Emissions

• Coordinate with other GNSS providers to limit the noise floor in the L-band
• Understand the operational performance parameters of all PNT systems & utilize multi-GNSS receivers
• Prevent increases in the noise floor due to EESS space-based L-band radars, future UWB devices
• Improve efforts to track down and eliminate intentional, small, commercial jamming devices
 – Plus in-band pseudolites

Protection from Out-of-Band Emissions

• Protect RNSS spectrum from out-of-band emissions in adjacent bands
 – Avoid “one-size-fits-all” solutions
 – Burden of evidence on proving safety, not causing harm, up to new entrants
 – Reflect industry best practices in improving out-of-band-emissions
• Protect RNSS applications from receiver overload resulting from excessive transmitted power in adjacent bands
 – Any application can suffer overload if the power differential is large enough
Summary

• Interoperability and robustness amongst the various GNSS constellations will benefit all users

• NASA is very active in national & international fora to enable service performance improvements and to preserve the spectrum environment
 • ICG, ITU, IOP, IOAG, SFCG, PNT EXCOM, numerous others...

• The NASA team on the U.S. Delegation looks forward to great collaboration at ICG-8, and welcomes productive technical exchanges with all participants on these issues.
BACK UP
• Laser ranging to GNSS satellites enables the comparison of optical laser measurements with radiometric data, identifying systemic errors
• Post-processing this data allows for refining station coordinates, satellite orbits, and timing epochs
• The refined data enables improved models and reference frames
• This results in higher PNT accuracies for all users, while enhancing interoperability amongst constellations
• NASA Administrator Bolden worked with Air Force leaders Gen Shelton & Gen Kehler to approve Laser Reflector Arrays (LRAs) onboard GPS III
• Plans are now underway to deploy LRAs on GPS-III in the 2019 timeframe.
Users in the SSV cannot always rely on conventional, instantaneous GPS solutions.

Thus, GPS performance requirements for the SSV are established via three parameters:

- **Pseudorange Accuracy** (also known as User Range Error, or URE), currently set as 0.8 meters for GPS III
- **Received Power**
- **Signal Availability**

<table>
<thead>
<tr>
<th>Signal</th>
<th>Terrestrial Minimum Power (dBW)</th>
<th>SSV Minimum Power (dBW)</th>
<th>Reference Half-beamwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 C/A</td>
<td>-158.5</td>
<td>-184.0</td>
<td>23.5</td>
</tr>
<tr>
<td>L1C</td>
<td>-157.0</td>
<td>-182.5</td>
<td>23.5</td>
</tr>
<tr>
<td>L2 C/A or L2C</td>
<td>-158.5</td>
<td>-183.0</td>
<td>26</td>
</tr>
<tr>
<td>L5</td>
<td>-157.0</td>
<td>-182.0</td>
<td>26</td>
</tr>
</tbody>
</table>

GPS III Availability*

<table>
<thead>
<tr>
<th>Signal</th>
<th>MEO SSV</th>
<th>HEO/GEO SSV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at least 1 signal</td>
<td>4 or more signals</td>
</tr>
<tr>
<td>L1</td>
<td>100%</td>
<td>≥ 97%</td>
</tr>
<tr>
<td>L2, L5</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

(*) Assumes a nominal, optimized GPS III constellation and no GPS spacecraft failures. Signal availability at 95% of the areas within the specific altitude.

Benefits of defining SSV requirements for other Global Navigation Satellite Systems (GNSS):

- Provide additional GNSS signals in space for much greater signal availability at higher altitudes
- Enable new interoperable capabilities as new PNT systems emerge
- Protect legacy applications and RNSS radio frequency (RF) spectrum as GNSS services evolve
- Secure mission economies of scale that extend network capabilities for all participating space users
- Increase onboard and safety for spacecraft operations while reducing burdens on network tracking and communications for all participating space users
Global Differential GPS System (GDGPS)

- Global, seamless, GPS augmentation system developed and operated by NASA's Jet Propulsion Laboratory
 - Supports real-time positioning, timing, and environmental monitoring for agency science missions.
 - Provides advanced real-time performance monitoring
 - Provides timely products for GPS situational assessment, natural hazard monitoring, emergency geolocation, and other applications.
 - Operational since 2000, has more than 100 dual-frequency GPS reference stations
US agencies that contribute to the IGS include:
• National Aeronautics and Space Administration (NASA),
• National Geospatial-Intelligence Agency (NGA),
• National Oceanic and Atmospheric Administration (NOAA)
• National Geodetic Survey (NGS),
• Naval Research Laboratory (NRL),
• National Science Foundation (NSF),
• US Naval Observatory (USNO), and
• US Geological Survey (USGS),
… and numerous universities & research organizations.

IGS products are formed by combining independent results from each of several Analysis Centers. Improvements in signals and computations have brought the centers’ consistency in the Final GPS satellite orbit calculation to ~ 2cm

Over 350 permanent tracking stations operated by more than 100 worldwide agencies comprise the IGS network. Currently the IGS supports two GNSS: GPS and the Russian GLONASS.

GPS Applications in IGS Projects & Working Groups
• IGS Reference Frame
• Supporting AREF - African Reference Frames
• Precise Time & Frequency Transfer
• GLONASS Pilot Service Project, now routine within IGS processes
• Low Earth Orbiters Project
• Ionosphere WG
• Atmosphere WG
• Sea Level - TIGA Project
• Real-Time Project
• Data Center WG
• GNSS WG

http://igscb.jpl.nasa.gov

NASA funds the coordinating center the IGS Central Bureau
GPS/GNSS Services can be Harmed Several Ways

- The ARNS/RNSS spectrum is a unique resource
 - Sharing with higher power services jams weaker signals
 - Out-of-band and ultra wide-band emissions raise the noise floor
 - Segmentation prevents future evolution

- Spread spectrum GPS signals are unlike communication signals
 - 10^{-16} W received power, one-way
 - Any filter can be overwhelmed if exposed to enough power
• In the U.S. Commercial GPS Jammers are Illegal
• The FCC Issues Cease and Desist orders to retailers, with penalties over $100,000 for each violation
Spectrum Protection at the International Level

Approved ITU Recommendations on RNSS Protection Criteria Exist

RNSS definition from the ITU Radio Regulations (RR)
• No. 1.43 radionavigation-satellite service (RNSS): A radionavigation-satellite service used for the purpose of radionavigation
• No. 1.59 safety service: Any radiocommunication service used permanently or temporarily for the safeguarding of human life and property
• No. 1.169 harmful interference: Interference which endangers the functioning of a radionavigation service or of other safety services or seriously degrades, obstructs, or repeatedly interrupts a radiocommunication service operating in accordance with the RR
• No. 5.28 Stations of a secondary service:
 • No. 5.29 shall not cause harmful interference to stations of primary services to which frequencies are already assigned or to which frequencies may be assigned at a later date
 • No. 5.30 cannot claim protection from harmful interference from stations of a primary service to which frequencies are already assigned or may be assigned at a later date
Evolving RNSS Spectrum

- RNSS (space-to-space) was added at the same time as the Galileo RNSS bands were added (WRC-2000)
- The bands 1164-1215 MHz, 1215-1240 MHz, 1240-1300 MHz, 1559-1610 MHz and 5010-5030 MHz all have RNSS (space-to-space) allocations in addition to RNSS (space-to-Earth)

(NASA’s Spectrum use 300 MHz – 30 GHz)