

Future GNSS – Precision Applications

Stuart Riley

Major Trimble Precision Markets

- Survey
 - Mostly person portable equipment
- Construction
 - Machine control and person carried equipment
 - Includes Marine applications
- GIS
 - From autonomous to RTK
- Agriculture
- Precision OEM
- Infrastructure
 - Includes deformation monitoring
 - RTK/CORS Base stations
 - VRS, RTX services etc

Customer goal is productivity Increase

GNSS

- Allows more rapid data collection
- Provides workflows that were not possible before GNSS
- In many applications higher accuracy results
- Multiple other key technologies
 - Communications
 - Integration with the customer workflow
 - Integrate into CAD packages
 - Project and material planning
 - Billing
 - Business Intelligence
 - etc
 - Other key Trimble positioning technologies
 - Laser instruments
 - Inertial
 - Pseudolites (Terralites in mining)
 - VRS Network Infrastructure
 - RTX Infrastructure

Trimble Construction Connected Site

Accuracy is application dependent

Example Trimble Products GPS/GLN/Galileo/QZSS/BeiDou/SBAS/OmniSTAR

Trimble High Level GNSS Requirements

- As many satellites as possible
 - Allows operation in "GNSS Hostile" environments
 - Trimble track all GNSS signals in space today
 - Improves accuracy (averages multipath / better geometry)
- Compatible signals
 - Different codes, modulations are easy to manage
 - Moore's law continues to shrink the digital electronics
 - Increasing number of RF bands harder to shrink
 - Result in higher power and more expensive products
 - Known coordinate reference frame offsets
- Spectrum Protection
- Open access to ICDs
- 2 or 3 frequencies per system
 - RTK/RTX etc.

Frequencies

- Already capable of tracking everything in space today
 - L1, L2, L5, E5A, E5B, E5AltBOC, LEX, B1, B2 etc
 - Where possible new signals should stick to the existing 4 bands:
 - "L1" Greater L1 band (B1 thru to the top of GLONASS L1)
 - "L2" GPS/GLONASS L2
 - "L5" L5/E5A/E5B/B2
 - "L6" E6/LEX/B3
 - Due to the number of available satellites on each band Trimble products are as follows:-
 - "L1" + "L2" low end legacy devices
 - "L1" + "L2" + "L5" becoming the minimum for precision markets
 - "L1" + "L2" + "L5" + "L6" high end devices
 - Sticking to these frequencies prevents the need for more complex antennas (larger) and additional radio front-ends (size/power)
 - Frequency offsets within this band are relatively easy to handle in the digital baseband and data processing
 - CDMA is the preferred modulation, avoids biases of FDMA
 - Although committed to supporting GLONASS FDMA
 - We have not fully evaluated frequencies beyond L-Band
 - Challenge is developing a small antenna with a very stable phase center
 - Requires an extra down-converter (size/power)
- Already have tri-lane RTK capability in shipping products

Modulation

- Key requirement is low noise measurements
- Navigation data message is important, but the measurements are the most critical
 - Preference would be more power in a pilot versus data channel
- TTFF not as important in the precision market
- Common Spectrum (e.g. GPS MBOC and Galileo CBOC)
 - Both signals providing a lower noise (esp. multipath) signal compared to BPSK is very positive
 - However to optimally demodulate these signals there are differences required in the channel configuration for MBOC and CBOC.
- Favour future modulations that have inherent multipath mitigation, e.g. AltBOC compared to regular BPSK.
 - Wider bandwidths help with multipath mitigation
 - Select the lowest noise signal from each band/system (e.g. on Galileo E5 the preferred signal is AltBOC although the engine is capable of using the other signals)
- Code and carrier need to be locked together at transmission
 - All navigation signals transmitted from a common point in space

Data Processing

- Today compute GPS, GLONASS, Galileo clock offsets
 - QZSS is treated as a GPS satellite and we have the advantage of not needing to compute the clock offset
 - When Galileo is active we'll evaluate whether the transmitted offset of the receiver calculated one is the most accurate
 - Preferred method of getting data is over the satellite to cover all user cases
 - Although internet delivery in some applications has advantages to rapidly bootstrap a receiver

Datum Offsets

- For short to moderate length baselines small datum offsets have minimal impact
- Large datum offsets are an issue (e.g. PZ90 prior to PZ90.1)
- For RTX Trimble compute our own orbits and clocks in the current epoch of ITRF
- BeiDou's transmission of differential corrections on the GEOs is an interesting concept and is being evaluated.
- Trimble's philosophy is track everything that is available
 - Analyze the data in real time and use everything that meets selection criteria
 - In a benign environment more signals relative to today have a marginal impact
 - The benefit is in a hostile environment (masking, trees etc)

Operators / International Community

- Spectrum Protection is very important
 - Products in the precision market have a very long life
- While small datum shifts can be tolerated knowledge of the datums is important
- Open ICD access
 - Preferably before the satellites are launched (the precision market has a lot of early adopters)
 - All current systems are now open!
- Publication of guaranteed performance levels
 - Even better real time access to current global performance

