Imperial College London

GNSS integrity monitoring for the detection and mitigation of interference

Dr. Shaojun Feng

Centre for Transport Studies

Outline

- GNSS vulnerability
- GNSS integrity monitoring
- Cases study
 - GAARDIAN
 - ERAIM
- Conclusions

GNSS Vulnerability

Technical barriers in system design

<u>Vulnerability – disturbances</u> **GNSS** signal - Amplitude Power~50w - Phase **Orbit Error Ionopsheric Error** computed Range Itcl **Tropospheric Error** Observed Range Irol **Multipath Error Receiver Error SV Clock Error RX Clock Error** interference **SV Clock Error** Power~ -158dBW

•

Vulnerability – Cause interference with GNSS PRN code

- Real signal (Reflected, retransmitted)
 - NLOS signal (lower signal strength)
 - Multipath signal (resulting higher or lower signal strength)
 - Shadowing (lower signal strength)

- Faked signal (e.g. spoofing, Simulator)
 - Signal strength higher or lower than nominal strength

Vulnerability – Cause interference without GNSS PRN code

- Interference frequency
 - Out-band
 - In-band

Types

- Narrow-band-limited Gaussian interference
- Wide-band-limited Gaussian interference
- Continuous-wave interference
- Pulsed interference
- Light-Squared-like interference
- Characteristics
 - Time stationary and time varying
 - Power level

Impact of interference to a GNSS receiver

- Denial of service e.g. jamming
- Degraded performance e.g. outband radio
- Deceived e.g. spoofing
- Clear evidence of threats acknowledged by (e.g.) the
 Royal Academy of Engineering, UK
 Volpe National Transportation System Centre, DOT USA
 Department of Homeland Security, USA

Impact of interference to Critical GNSS applications

- Safety (e.g. aircraft navigation, emergence service)
- Liability (e.g. GNSS based road charging)
- Security
 - Mobile network synchronization
 - Theft (jamming GNSS based tracking assets)
 - Terrorist (spoofing attack on aircraft)

Motivation of jamming and spoofing

- Fun
- Criminal / terrorist
- Commercial
- Privacy protection
- Others

Examples of inteference

- San Diego
 - US Navy ship
- Newark airport
 - \$33, 200mW GPS jammer
- University of Texas experiment
 - Performed spoofing attack successfully

Integrity of a navigation system

- Trust navigation system?
- System integrity
 - *trust* placed on the *correctness* of navigation solution- key safety parameter for aviation
 - navigation system required to deliver a warning (an alarm) of any malfunction (i.e. alarm limit exceeded) to users within a given period of time (time-to-alarm) and with a given probability (1integrity risk).

Integrity Monitoring of GNSS

- System level
 - Global
 - Signal-in-Space (SIS)
- Network Level
 - Satellite Based Augmentation System (SBAS)
 - Wide area
 - SIS + Ionosphere
 - Ground Based Augmentation System (GBAS)
 - Local area
 - SIS + Ionosphere + troposphere
- User level
 - Receiver Autonomous Integrity Monitoring
 - User location
 - SIS + Ionosphere + troposphere + multipath
- All these methods are not designed for interference

Interference detection and mitigation measures

- Independent monitoring
 - Purposes
 - Situational awareness
 - Law enforcement
 - Set up independent monitoring network
 - New monitoring network
 - Upgrade existing monitoring network
 - Define communication protocol/channels
 - Broadcast to users
- Receiver / User level
 - Signal processing based
 - Solutions based
 - Multiple sensors based

An independent monitoring approach-GAARDIAN

- GNSS Availability, Accuracy, Reliability anD Integrity Assessment for timing and Navigation
 - capture and definition of user requirements for wide-range of applications
 - focus on intelligent integrity monitoring

Overall GAARDIAN Architecture

Monitoring network

GAARDIAN Probe

- Using atomic clock
- Placed in a known position

Comparison of computed and surveyed positions

- Integrity of ranging signals
 - flag satellites
 - aid failure identification

Output

- set of metrics
- user-configurable thresholds
- intelligent data reduction

GAARDIAN Server

- Two components:
 - space-segment health monitor (SSHM)
 - network-domain monitoring (NDM)
- SSHM inputs from real-time data from OS stations
 - monitors → early detection of space segment failures (user range errors)
 - metric to detect ramp errors using time differential carrier phase
 - -outputs: status of visible satellites
 - » estimated performance
 - » monitoring level

NDM inputs from network of probe integrity monitors

- qualifies type of failure for each satellite
- enables users to determine (according to threshold) whether LBS is supported
- QoS

Example Result

A user level monitoring approach- ERAIM

- Receiver Autonomous Integrity Monitoring (RAIM)
 - Based on pseudorange measurement
 - Based on consistency check
 - One failure assumption
- Conventional RAIM
 - Achieved a certain level of success e.g. NPA
 - Incapable in the presence of interference
 - multiple failures
 - consistent multiple failures (e.g. spoofing)

Matrix of spoofer characteristics

Ι.

П.

- A. Signal retransmission
- B. Signal record and playback III.
- C. General signal generator
- D. GNSS signal simulator
- E. Modified pesudolite
- F. Dedicated spoofer

- Height of transmitter antenna
 - Sparse distribution of transmitter
 - Distance between transmitter and receiver
- IV. Synchronization with real signal
- V. Knowledge of targeted receiver
- VI. Multiple PRNs
- VII. Attack scheme

	Α	B	С	D	E	F	Real
I.	Low	Low	Low	Low	Low	Low	High
I	No	No	No	No	Possible	Possible	Yes
	Short	Short	Short	Short	Short	Short	Long
IV	Almost	No	No	No	Yes	Yes	NA
V	No	No	No	location	No	location	No
VI	Yes	Yes	Yes	Yes	Possible	Yes	Yes
VII	Stronger signal	Stronger signal	Stronger signal	Jamming before spoofing	Stronger signal	Hide, fool and attack	NA

Extended RAIM (ERAIM)

Example Results

The hide-fool-attack scheme is taken as an example for testing. The signal strengths of theoretical and measured are used to generate a SNR model and factor respectively (Fig. left). It is therefore used to detect potential spoofing (Fig. right).

Conclusions

- GNSS is vulnerable
- There are challenges in the detection and mitigation of interference
- Integrity monitoring targeting interference at both network and user level are necessary
- GAARDIAN
 - Architecture implemented shown to be successful
 - Offline testing successfully show GAARDIAN performs as required
- ERAIM
 - The spoofing can not be perfect
 - RAIM needs to be extended to include angle of arrival, signal strength and Doppler measurements.
 - ERAIM can effectively detect most malicious interference spoofing.

Thank you for your attention

More information

http://www3.imperial.ac.uk/geomatics