Multi-GNSS and deeply-coupled integration of sensors for interference mitigation

Dr Laura Ruotsalainen
ICG EXPERTS MEETING, 17. December, 2015

Finnish Geospatial Research Institute (FGI)
National Land Survey
Expertise areas of the Dept. of Navigation and Positioning

Satellite navigation
- GPS, GLONASS, BeiDou, Galileo, IRNSS
- EGNOS
- Interference detection and mitigation
- Receiver techniques
- Precise navigation

Indoor navigation
- Sensor integration
- Indoor positioning
- Visual and DTV positioning
- Optical sensors

LBS and contextual thinking
- Mobile LBS
- Context awareness
- Positioning in ITS
- Positioning for maritime safety
Multi-GNSS for interference mitigation
Current Status of Multi-GNSS

<table>
<thead>
<tr>
<th></th>
<th>GPS</th>
<th>GALILEO</th>
<th>GLONASS</th>
<th>BeiDou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of planned satellites</td>
<td>30</td>
<td>30</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Current Status</td>
<td>31 operational, 1 under maintenance</td>
<td>8 operational, 2 under maintenance</td>
<td>23 operational, 2 in preparation, 2 in flight tests phase</td>
<td>16 operational satellites, 4 under commissioning</td>
</tr>
<tr>
<td>Orbital planes</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Access Scheme</td>
<td>CDMA</td>
<td>CDMA</td>
<td>FDMA/CDMA</td>
<td>CDMA</td>
</tr>
</tbody>
</table>

- SBAS: 3 WAAS, 3 EGNOS, 3 SDCM, **4 IRNSS (7 planned)**, 1 QZSS (7 planned)
FGI-GSRx software-defined Receiver

FGI-GSRx

Galileo
 E1
GPS
 L1
BeiDou
 B1 and B2
Glonass
 L1
IRNSS

✓ MATLAB implementation for postprocessing
✓ Dual-frequency code-phase based positioning
✓ Multi-GNSS performance analysis, Jamming detection, Tightly-coupled INS + GNSS etc.
Data collection with multi-GNSS Front-ends and L1 jammer

- Multi-GNSS Repeater
- L1 Jammer
- Multi-GNSS Antenna
- NSL Stereo v2 front-ends
Analyzed jammer

Covert GPS L1 jammer: with special permission from the Finnish Communications Regulatory Authority, restricted to -30 dBm (nominal 13 dBm)

Instantaneous frequency

Signal spectrum at L1
Jamming Detection

- A Running Digital Sum (RDS) –based jamming detection method
- Computes the level changing rate of RDS of the digitized raw data bins

Multi-GNSS performance

<table>
<thead>
<tr>
<th>Normal</th>
<th>Jamming L1</th>
<th>GPS</th>
<th>GLONASS</th>
<th>BDS B1</th>
<th>BDS B2</th>
<th>Multi-GNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.8</td>
<td>6.7</td>
<td>14.3</td>
<td>8.1</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>375</td>
<td>73.7</td>
<td>16.9</td>
<td>7.2</td>
<td>145</td>
</tr>
</tbody>
</table>

RMSE$_{3D}$ [m]
- Multi-GNSS constellations switched to a single constellation BeiDou B2, when a jamming signal is detected

- $\text{RMSE}_{3D} 6.5$ m
Benefits and challenges of multi-GNSS

Implementation complexity vs. expected performance

- Dual/triple built-in front-ends targeted for different frequencies
- Some tens of channels need to be continuously tracked => processing power
- High bandwidth signals => high sampling rates => will drain out the receiver power

- Improved accuracy, availability, reliability, integrity
- Interference mitigation
Deeply coupled GNSS, INS and visual sensor integration
Deeply coupled GNSS/INS

- Software GNSS receiver
- Corrected replicas
- DLL, FLL Discriminator
- NCO
- Clock
- Deeply coupled Kalman filter
- Inertial Navigation System
- IMU corrections
- P, V, A
Visual sensors

- Motion of features in consecutive images provide motion information
- Heading and translation
 - Visual gyroscope and visual odometer
 - Translation a challenge when monocular camera used
 - Ruotsalainen, Doctoral dissertation 2013
- Used for correcting INS measurements for improved deeply-coupled processing

Data Collection

• Jamming scenario:
 • GPS data was collected, jamming was started at 48 seconds, ended at 80 seconds
 • Static scenario

• Data was analyzed using:
 • GPS signals only
 • GPS + INS deeply coupled
 • GPS + INS + visual sensor deeply coupled
 • INS: XSens MTi-G-700 MEMS IMU
 • Images for visual processing obtained using a GoPro Hero3 camera
Deeply-coupled Results

- **GNSS only, C/N\(_0\) s below the line, no pv solution**
- **Jamming started**
- **GNSS+INS+Visual**
 - Max errors
 - Position: 80m
 - Velocity: 2 m/s
 - Attitude: 3 deg
- **GNSS+INS**
 - Max errors
 - Position: 300m
 - Velocity: 7 m/2
 - Attitude: 5 deg
Publications 1/2

Publications 2/2

European Navigation Conference 2016

Helsinki, Finland, 30th May – 2nd June 2016

IMPORTANT DEADLINES

Full-paper submission: 15th January, 2016
(Scientific Track)

Abstract Submission: 15th January, 2016
(Industry Track)

Acceptance Notification: 31st March, 2016

Early Registration: 15th April, 2016