

Генеральная Ассамблея

Distr.: Limited 13 January 2009

Russian

Original: English

Комитет по использованию космического пространства в мирных целях Научно-технический подкомитет Сорок шестая сессия Вена, 9-20 февраля 2009 года Пункт 10 предварительной повестки дня* Использование ядерных источников энергии в космическом пространстве

Пересмотренный проект рамок обеспечения безопасного использования ядерных источников энергии в космическом пространстве

Записка Секретариата

- 1. Объединенная группа экспертов Научно-технического подкомитета и Международного агентства по атомной энергии (МАГАТЭ), учрежденная на сорок четвертой сессии Подкомитета для разработки международных технически обоснованных рамок задач и рекомендаций по обеспечению безопасности планируемого и в настоящее время прогнозируемого использования ядерных источников энергии в космическом пространстве, провела в 2008 году три совещания в феврале, июне и октябре. На этих совещаниях Объединенная группа экспертов рассмотрела замечания в отношении текста проекта рамок обеспечения безопасного использования ядерных источников энергии в космическом пространстве, полученные от государств членов Комитета по использованию космического пространства в мирных целях, государств членов МАГАТЭ, Комиссии МАГАТЭ по стандартам безопасности и комитетов МАГАТЭ по стандартам безопасности. В результате этой работы был подготовлен новый, обновленный текст проекта рамок обеспечения безопасного использования.
- 2. В прилагаемом документе содержится текст пересмотренного проекта рамок обеспечения безопасного использования ядерных источников энергии в космическом пространстве.

V.09-80134 (R) 280109 300109

_

^{*} A/AC.105/C.1/L.297.

Пересмотренный проект рамок обеспечения безопасного использования ядерных источников энергии в космическом пространстве*

Предисловие

Разработка и использование ядерных источников энергии (ЯИЭ) в прикладных целях в космическом пространстве имеет место в тех случаях, когда связанные с программой полета особые требования и ограничения в отношении электропитания и управления температурным режимом не позволяют использовать неядерные источники энергии. К таким программам относятся полеты межпланетных зондов к внешним пределам Солнечной системы, для которых панели солнечных батарей не пригодны в качестве источника электропитания вследствие большой продолжительности полета вдали от Солнца.

Исходя из современного уровня знаний и возможностей, космические ЯИЭ – это единственный существующий вариант энергообеспечения некоторых программ космических полетов и значительного расширения возможностей других программ полетов. Ряд осуществляемых и прогнозируемых полетов был бы невозможен без использования космических ЯИЭ. Используемые в космосе конструкции бывают радиоизотопными (например, термоэлектрические генераторы радиоизотопные радиоизотопные И обогреватели) и реакторными. Реакторы для энергообеспечения или приведения в движение предполагается использовать для научно-исследовательских экспедиций, в частности на Луну, Марс и в другие места назначения в Солнечной системе, и для других полетов, требующих большой мощности (например, системы связи, межорбитальные космические буксиры). Поскольку в космических ЯИЭ применяются радиоактивные материалы или ядерное топливо и, следовательно, существует возможность причинения вреда людям и окружающей среде в биосфере Земли, то обеспечение безопасности всегда должно быть неотъемлемым элементом проектирования и применения космических ЯИЭ.

По сравнению с наземными видами применения в отношении использования ЯИЭ в космическом пространстве действуют особые соображения, касающиеся безопасности. В отличие от многочисленных видов наземного применения ядерной энергии в космической технике она используется нечасто, а предъявляемые требования могут существенно отличаться в зависимости от конкретной программы полета. Требования к запуску и функционированию аппаратов в космосе налагают ограничения по габаритам и массе и другие связанные с космической средой ограничения, которых не существует для многих наземных ядерных установок. Для некоторых проектов требуется, чтобы космические ядерные источники энергии функционировали

^{*} Настоящий текст основывается на неотредактированном варианте, содержащемся в документе A/AC.105/C.1/L.292/Rev.1, и включает замечания, полученные от государств – членов Комитета по использованию космического пространства в мирных целях, государств – членов Международного агентства по атомной энергии (МАГАТЭ), Комиссии МАГАТЭ по стандартам безопасности и комитетов МАГАТЭ по стандартам безопасности.

автономно на большом удалении от Земли и в суровых условиях. Вследствие неудачного запуска и непреднамеренного возвращения в атмосферу возможно возникновение аварийных ситуаций, при которых ядерный источник энергии может подвергнуться воздействию экстремальных физических условий. Эти и другие особые соображения, касающиеся безопасного использования космических ЯИЭ, значительно отличаются от соображений, касающихся безопасности наземных ядерных систем, и не учитываются в руководствах по обеспечению безопасности наземного использования ядерных технологий.

После этапа первоначального обсуждения и подготовки технический подкомитет Комитета по использованию космического пространства в мирных целях Организации Объединенных Наций и МАГАТЭ в 2007 году договорились об установлении партнерства для разработки проекта рамок обеспечения безопасного использования ЯИЭ в космическом пространстве. Это партнерство позволило объединить экспертные знания Подкомитета в области использования космических ядерных источников энергии и сложившиеся процедуры МАГАТЭ в области разработки норм безопасности, касающихся ядерной безопасности и радиационной защиты при наземном применении. Рамки обеспечения безопасного использования ядерных источников энергии в космическом пространстве представляют собой технический консенсус между обеими организациями.

Рамки обеспечения безопасного использования ядерных источников энергии в космическом пространстве предназначены для использования в качестве руководства для национальных целей. В этой связи это руководство носит добровольный характер и не является юридически обязательным согласно международному праву.

Рамки обеспечения безопасного использования ядерных источников энергии в космическом пространстве не являются публикацией в серии "Нормы безопасности" МАГАТЭ, а призваны дополнить эту серию руководством высокого уровня, учитывающим особые соображения, связанные с ядерной безопасностью и радиационной защитой и касающиеся обеспечения безопасного использования ЯИЭ на соответствующих этапах их запуска, эксплуатации и вывода из эксплуатации. Эти Рамки призваны служить дополнением к существующим национальным и международным руководствам и нормам безопасности, касающимся проводимых на Земле мероприятий, включая проектирование, создание, испытание и перевозку космических ЯИЭ. При разработке Рамок обеспечения безопасного использования учитывались применимые конвенции, принципы и нормы международного права.

Особое внимание в Рамках обеспечения безопасного использования уделяется защите людей и окружающей среды в биосфере Земли от возможных опасностей, связанных с соответствующими этапами программ применения космических ЯИЭ, включая запуск, эксплуатацию и вывод из эксплуатации. Защита в космосе людей, участвующих в выполнении программ исследований, не входит в сферу охвата Рамок обеспечения безопасного использования. Аналогичным образом, защита окружающей среды других небесных тел остается вне сферы охвата Рамок обеспечения безопасного использования.

Таким образом, цель Рамок обеспечения безопасного использования состоит в том, чтобы содействовать безопасному использованию ЯИЭ в

космическом пространстве; в этой связи эти Рамки являются объективно применимыми к использованию всех космических ЯИЭ.

Научно-технический подкомитет и МАГАТЭ желают выразить признательность всем тем, кто содействовал подготовке и редактированию текста Рамок обеспечения безопасного использования и достижению консенсуса.

Содержание

		Cmp.
1.	Введение	5
	1.1. Исходная информация	5
	1.2. Цель	6
	1.3. Сфера охвата	6
2.	Цель обеспечения безопасности	7
3.	Рекомендации правительствам	7
	3.1. Директивы, требования и процедуры обеспечения безопасности	8
	3.2. Обоснование применения космических ядерных источников энергии	8
	3.3. Разрешение на запуск космического аппарата	8
	3.4. Готовность к чрезвычайным ситуациям и реагирование на них	9
4.	Рекомендации руководству	9
	4.1. Ответственность за обеспечение безопасности	9
	4.2. Руководство и управление по вопросам обеспечения безопасности	10
5.	Рекомендации технического характера	11
	5.1. Техническая компетентность в вопросах ядерной безопасности и радиационной защиты	11
	5.2. Учет безопасности при проектировании и разработке	12
	5.3. Оценка степени риска	12
	5.4. Ослабление последствий аварийных ситуаций	13
6.	Глоссарий терминов	13

1. Введение

1.1. Исходная информация

Разработка и использование ядерных источников энергии (ЯИЭ) в космическом пространстве¹ на космических аппаратах имеет место в тех случаях, когда связанные с программой полета особые требования и ограничения в отношении электропитания и управления тепловым режимом не позволяют использовать неядерные источники энергии. К таким программам относятся полеты межпланетных зондов к внешним пределам Солнечной системы, для которых панели солнечных батарей не пригодны в качестве источника электропитания вследствие большой продолжительности полета вдали от Солнца.

По своей конструкции космические ЯИЭ делятся на радиоизотопные энергетические установки (включая радиоизотопные термоэлектрические генераторы и радиоизотопные обогреватели) и ядерные реакторы. В настоящее время используются радиоизотопные энергетические установки, которые предполагается использовать и далее. Космические радиоизотопные энергетические установки, возможно, будут использоваться в рамках намечаемых космическими агентствами экспедиций на Марс. Реакторы для энергоснабжения или приведения в движение предполагается использовать в рамках научно-исследовательских экспедиций, например на Луну и Марс и в другие районы Солнечной системы, и других полетов, требующих большой мощности (например, системы связи, межорбитальные космические буксиры). Использование космических ЯИЭ позволило осуществить ряд полетов). Исходя из современного уровня знаний и возможностей, космические ЯИЭ - это единственный существующий вариант энергообеспечения некоторых программ космических полетов и значительного расширения возможностей других программ полетов.

Условия применения космических ЯИЭ как в режиме штатной эксплуатации, так и в возможных аварийных ситуациях, начиная от запуска и эксплуатации до вывода из эксплуатации, существенно отличаются от условий наземного применения. Вывод на орбиту и космическая среда накладывают совершенно особые требования к проектированию и эксплуатации космических ЯИЭ в плане обеспечения безопасности. Кроме того, требования, предъявляемые к программам космических полетов, определяют необходимость применения уникальных и индивидуальных для каждой программы полета проектных решений для космических ЯИЭ, космических аппаратов, пусковых систем и полетных операций.

Поскольку в космических ЯИЭ присутствуют радиоактивные материалы или ядерное топливо и, следовательно, существует возможность причинения в результате аварии вреда людям и окружающей среде² в биосфере Земли, то обеспечение безопасности должно всегда являться неотъемлемым элементом проектирования и применения космических ЯИЭ. При обеспечении

В настоящем документе термин "космическое пространство" является синонимом термина "космос".

² Используемая в настоящем документе фраза "люди и окружающая среда" является синонимом фразы "люди и окружающая среда в биосфере Земли".

безопасности (т.е. защиты людей и окружающей среды) следует уделять внимание всей технологии использования ЯИЭ, а не только их космическому компоненту. На аспекты ядерной безопасности могут влиять все элементы применяемой технологии. Поэтому вопросы обеспечения безопасности необходимо решать в контексте всей технологии применения космических ЯИЭ, которая включает космический ЯИЭ, космический аппарат, пусковую систему, полетное задание и правила полета.

1.2. Цель

Цель настоящей публикации состоит в том, чтобы представить руководство высокого уровня в форме типовых рамок обеспечения безопасности. Эти рамки составляют основу для разработки национальных и международных межправительственных рамок обеспечения безопасности и обеспечивают возможность гибкой адаптации таких рамок к конкретным видам применения космических ЯИЭ и организационным структурам. Такие национальные и международные межправительственные рамки должны технические, так и программные элементы для снижения рисков, возникающих в связи с использованием космических ЯИЭ. Принятие таких рамок может содействовать развитию двустороннего и многостороннего сотрудничества в осуществлении космических проектов с использованием ЯИЭ и придаст мировой общественности уверенность в том, что запуск и использование космических ЯИЭ будут осуществляться безопасным образом. Это руководство отражает международный консенсус в отношении мер, необходимых для обеспечения безопасности, и применимо как к радиоизотопным энергетическим установкам, так и к ядерным реакторам.

1.3. Сфера охвата

Рамки обеспечения безопасного использования ядерных источников энергии в космическом пространстве прежде всего охватывают вопросы обеспечения безопасности, касающиеся таких этапов применения космических ЯИЭ, как запуск, эксплуатация и вывод из эксплуатации. Руководство высокого уровня затрагивает как программные, так и технические аспекты обеспечения безопасности, включая проектирование и применение космических ЯИЭ. Вместе с тем подробное использование данного руководства зависит от конкретного проектного решения и вида применения. Содержащееся в данных рамках руководство дополняет существующие стандарты, охватывающие другие аспекты использования космических ЯИЭ. Так, работы, выполняемые в ходе наземного этапа применения космических ЯИЭ, включая разработку, испытания, изготовление, обращение и транспортирование, регулируются национальными и международными нормами, касающимися наземных ядерных установок и работ. Аналогично этому аспекты неядерной безопасности применения космических регулируются соответствующими нормами безопасности, устанавливаемыми правительственными международными И межправительственными организациями (например, региональным космическим агентством).

Для установления рамок обеспечения безопасного использования космических ЯИЭ применительно к людям и окружающей среде в биосфере Земли имеется существенный объем знаний. Однако пока не имеется

сопоставимого объема научных данных, которые служили бы технически обоснованной основой для разработки рамок применения космических ЯИЭ с точки зрения защиты людей в уникальных условиях в космосе и вне биосферы Земли. Поэтому защита в космосе людей, участвующих в полетах, в которых используются космические ЯИЭ, не входит в сферу охвата Рамок обеспечения безопасного использования. Аналогичным образом, защита окружающей среды других небесных тел остается вне сферы охвата Рамок обеспечения безопасного использования.

2. Цель обеспечения безопасности

Основополагающая цель обеспечения безопасности состоит в защите людей и окружающей среды в биосфере Земли от потенциальных рисков, связанных с соответствующими этапами применения космических ядерных источников энергии, включая запуск, эксплуатацию и вывод из эксплуатации.

Правительства и организации, отвечающие за разрешение, утверждение или осуществление программ с использованием космических ЯИЭ, должны принимать меры по обеспечению защиты людей (отдельных лиц и населения в целом) и окружающей среды в биосфере Земли, излишне не ограничивая при этом полезное применение космических ЯИЭ.

Рекомендации, направленные на достижение основополагающей цели обеспечения безопасности, делятся на три категории: рекомендации правительствам (раздел 3 ниже) предназначены для правительств и соответствующих международных межправительственных организаций, отвечающих за разрешение, утверждение или осуществление полетов с использованием космических ЯИЭ; рекомендации руководству (раздел 4 ниже) предназначены для руководства организации, осуществляющей полеты с использованием космических ЯИЭ; и рекомендации технического характера (раздел 5 ниже) касаются проектирования, разработки и этапов полета космических аппаратов с ЯИЭ.

3. Рекомендации правительствам

В настоящем разделе приведены рекомендации для правительств и соответствующих международных межправительственных организаций (например, региональных космических агентств), отвечающих за разрешение, утверждение или осуществление полетов с использованием космических ЯИЭ. В обязанности правительств входит выработка директив, требований и процедур обеспечения безопасности; обеспечение выполнения этих директив, требований и процедур; обеспечение приемлемого обоснования использования космического ЯИЭ в сравнении с другими альтернативами; установление процедуры официальной выдачи разрешения на запуск космического аппарата; и подготовка к чрезвычайным ситуациям и реагирование на них. В отношении же полетов, осуществляемых несколькими странами или несколькими организациями, в руководящих документах должно содержаться четкое распределение этих обязанностей.

3.1. Директивы, требования и процедуры обеспечения безопасности

Правительствам, отвечающим за разрешение или утверждение полетов с использованием космических ядерных источников энергии, следует выработать директивы, требования и процедуры обеспечения безопасности.

Правительствам и соответствующим международным межправительственным организациям, отвечающим за разрешение, утверждение или осуществление полетов с использованием космических ЯИЭ, независимо от того, осуществляют ли такую деятельность правительственные учреждения или неправительственные юридические лица, следует выработать соответствующие директивы, требования и процедуры обеспечения безопасности и обеспечения безопасности и выполнения собственных требований по обеспечению безопасности.

3.2. Обоснование применения космических ядерных источников энергии

В рамках процедуры утверждения правительством программ полетов следует убеждаться в том, что обоснование применения космических ядерных источников энергии является достаточно аргументированным.

Применение космических ЯИЭ может быть сопряжено с риском для людей и окружающей среды. Поэтому правительствам и соответствующим международным межправительственным организациям, отвечающим за разрешение, утверждение или осуществление полетов с использованием космических ЯИЭ, следует обеспечивать, чтобы в обосновании применения каждого космического ЯИЭ рассматривались альтернативы и чтобы это обоснование было должным образом аргументировано. В рамках этой процедуры следует учитывать как преимущества, так и существующие для людей и окружающей среды риски, связанные с соответствующими этапами применения космических ЯИЭ, включая запуск, эксплуатацию и вывод из эксплуатации.

3.3. Разрешение на запуск космического аппарата

Следует установить и соблюдать процедуру выдачи разрешения на запуск систем с космическими ядерными источниками энергии.

Правительству, под наблюдением и с разрешения которого осуществляются операции по запуску космических аппаратов с ЯИЭ, следует установить процедуру выдачи разрешения на запуск космического аппарата с уделением особого внимания аспектам обеспечения ядерной безопасности³. Эта процедура должна включать оценку всей соответствующей информации и соображений, поступающих от других участвующих организаций. Процедура выдачи разрешения на запуск космического аппарата должна дополнить существующие процедуры выдачи разрешений, охватывающие неядерные и наземные аспекты обеспечения безопасности запуска. Неотъемлемой частью процедуры выдачи разрешения должна быть независимая оценка безопасности (т.е. проводимый независимо от управляющей организации, осуществляющей космический полет,

³ В настоящем документе термин "ядерная безопасность" охватывает безопасное использование всех космических ЯИЭ.

анализ адекватности и действенности обеспечения безопасности). Эта независимая оценка безопасности должна охватывать все аспекты применения космических ЯИЭ, включая космический ЯИЭ, космический аппарат, пусковую систему, полетное задание и правила полета, при оценке риска для людей и окружающей среды, сопряженного с соответствующими этапами космического полета, включая запуск, эксплуатацию и вывод из эксплуатации.

3.4. Готовность к чрезвычайным ситуациям и реагирование на них

Следует готовиться к реагированию на возможные чрезвычайные ситуации, затрагивающие космические ядерные источники энергии.

Правительствам И соответствующим межправительственным организациям, отвечающим за разрешение, утверждение или осуществление полетов с использованием космических ЯИЭ, следует быть готовыми оперативно реагировать на чрезвычайные ситуации на этапах запуска и полета, которые могут вызвать радиационное облучение населения и радиоактивное загрязнение окружающей среды Земли. Деятельность по обеспечению готовности К чрезвычайным ситуациям включает противоаварийное планирование, подготовку кадров, проведение учений и разработку процедур и составление уведомлений о возможной аварийной ситуации. Планы реагирования при чрезвычайных ситуациях должны разрабатываться таким образом, чтобы ограничить радиоактивное загрязнение и радиационное облучение.

4. Рекомендации руководству

В настоящем разделе содержатся рекомендации руководству организаций, участвующих в полетах с использованием космических ЯИЭ. В контексте Рамок обеспечения безопасного использования руководству следует выполнять правительственные и соответствующие межправительственные директивы, требования и процедуры по обеспечению безопасности для достижения основополагающей цели обеспечения безопасности. Обязанности руководства заключаются, в частности, в принятии на себя основной ответственности за безопасность, обеспечение наличия достаточных ресурсов в целях безопасности и содействие и сохранение устойчивой "культуры безопасности" внутри организации.

4.1. Ответственность за обеспечение безопасности

Организация, осуществляющая космический полет с использованием ядерного источника энергии, несет основную ответственность за обеспечение безопасности.

Организация, осуществляющая космический полет с использованием ЯИЭ, несет основную ответственность за обеспечение безопасности. Для выполнения требований в отношении безопасности, установленных для применения космических ЯИЭ, эта организация должна включать в себя все соответствующие стороны, участвующие в осуществлении космического полета (поставщик космического аппарата, поставщик ракеты-носителя, поставщик

ЯИЭ, стартовый комплекс и т.д.) или иметь официальные договоренности со всеми такими сторонами.

Руководство должно нести следующие конкретные обязанности по обеспечению безопасности:

- а) развитие и поддержание необходимой технической компетентности;
- b) организация надлежащей подготовки и информирование всех соответствующих участников;
- с) внедрение процедур, направленных на обеспечение безопасности при любых достаточно прогнозируемых условиях;
- d) разработка, при необходимости, конкретных требований по обеспечению безопасности для космических полетов с использованием ЯИЭ;
- е) проведение испытаний и анализов на безопасность и их документирование в качестве вклада в процесс выдачи правительством разрешения на запуск космического аппарата;
- f) рассмотрение заслуживающих доверия противоположных мнений по вопросам безопасности;
 - g) точное и своевременное информирование общественности.

4.2. Руководство и управление по вопросам обеспечения безопасности

Организации, осуществляющей космические полеты с использованием ядерных источников энергии, следует установить и поддерживать эффективное руководство и управление работой по обеспечению безопасности.

В организации, осуществляющей космические полеты, руководство работой по обеспечению безопасности следует проявлять на самых высоких уровнях. Управление вопросами безопасности должно быть частью общего управления полетом. Руководству следует формировать, внедрять и поддерживать культуру безопасности, которая служит гарантией обеспечения безопасности и отвечает требованиям процедуры выдачи правительством разрешений на запуск космического аппарата.

Культура безопасности должна включать следующие элементы:

- a) установление четкого порядка подчиненности, сфер ответственности и линий связи;
 - b) активная обратная связь и непрерывное совершенствование;
- с) индивидуальная и коллективная приверженность обеспечению безопасности на всех уровнях организации;
- d) учет действий организации и отдельных лиц по обеспечению безопасности на всех уровнях;
- е) пытливость и усвоение знаний в вопросах обеспечения безопасности для недопущения самоуспокоенности.

5. Рекомендации технического характера

В настоящем разделе содержатся технические рекомендации организациям, участвующим в полетах с использованием космических ЯИЭ. Эти рекомендации касаются проектирования, разработки и этапов полета космических аппаратов с ЯИЭ. В целях разработки и обеспечения технической основы для процедур выдачи разрешений и утверждения и для обеспечения готовности к чрезвычайным ситуациям и реагирования на них эти рекомендации охватывают следующие четыре ключевые области:

- а) создание и поддержание потенциала в области проектирования и проведения испытаний и анализа в целях обеспечения ядерной безопасности;
- b) использование этого потенциала в процессе проектирования, квалификации и получения разрешения на запуск аппаратов с использованием космических ЯИЭ (т.е. космического ЯИЭ, космического аппарата, пусковой системы, полетного задания и правил полета);
- с) оценка радиационных рисков для людей и окружающей среды в связи с возможными аварийными ситуациями и обеспечение приемлемого и максимально низкого уровня риска;
- d) принятие мер для устранения последствий возможных аварийных ситуаций.

5.1. Техническая компетентность в вопросах ядерной безопасности и радиационной защиты

Для применения космических ядерных источников энергии требуются обеспечение и поддержание технической компетентности в вопросах ядерной безопасности и радиационной защиты.

Важнейшим условием достижения цели обеспечения безопасности является наличие технической компетенции в вопросах ядерной безопасности и радиационной защиты. Начиная с самого раннего этапа разработки технологии применения космических ЯИЭ, организациям, участвующим в деятельности по применению космических ЯИЭ, следует, в соответствии со своими обязанностями, создать потенциал в области проектирования и проведения испытаний и анализа для обеспечения ядерной безопасности, включая, в соответствующих случаях, квалифицированный персонал и материальную базу. Этот потенциал следует поддерживать на протяжении всех соответствующих этапов полетов космических аппаратов, использующих ЯИЭ.

Компетентность в вопросах ядерной безопасности и радиационной защиты должна включать:

- а) проработку сценариев и тщательный просчет вероятности аварийных ситуаций для технологии применения космических ЯИЭ;
- b) характеристику физических условий, воздействию которых космический ЯИЭ и его компоненты могут подвергаться при нормальной эксплуатации и в возможных аварийных ситуациях;

- с) оценку возможных последствий для людей и окружающей среды в случае возможных аварийных ситуаций;
- d) выявление и оценку внутренних способностей и технических средств обеспечения защиты для снижения риска возможных аварийных ситуаций для людей и окружающей среды.

5.2. Учет безопасности при проектировании и разработке

Процессы проектирования и разработки должны обеспечивать максимально возможный уровень безопасности.

Основополагающий подход к достижению цели обеспечения безопасности должен заключаться в снижении рисков, сопряженных со штатной эксплуатацией и возможными аварийными ситуациями, до максимально низкого уровня путем установления такого процесса проектирования и разработки, в котором соображения безопасности рассматриваются в контексте всей технологии применения космических ЯИЭ (т.е. космический ЯИЭ, космический аппарат, пусковая система, полетное задание и правила полета). Вопросы ядерной безопасности должны учитываться уже на самих ранних этапах проектирования и разработки и на протяжении всех этапов космического полета. Процесс проектирования и разработки должен:

- а) выявлять, оценивать и внедрять профилактические меры, конструктивные особенности и средства контроля, которые:
 - i) снижают вероятность возможных аварийных ситуаций, которые могут привести к выбросу радиоактивных материалов;
 - іі) уменьшают масштабы возможных выбросов и их потенциальных последствий;
 - b) включать ранее приобретенный опыт;
- с) в установленном порядке путем проведения испытаний и анализа проверять и подтверждать адекватность конструктивных решений, обеспечивающих безопасность, и средства контроля;
- d) использовать анализ степени риска для оценки эффективности конструктивных особенностей и средств контроля и обеспечивать передачу результатов для использования в проектировании;
- е) использовать практику защиты проекта для гарантирования его безопасности.

5.3. Оценка степени риска

Для определения характеристик радиационных рисков для людей и окружающей среды следует проводить оценку степени риска.

По мере возможности следует проводить оценку радиационных рисков для людей и окружающей среды, сопряженных с возможными аварийными ситуациями в ходе запуска и использования космических ЯИЭ и в количественном выражении описывать связанные с этим неопределенности. Оценка риска имеет существенно важное значение для процесса выдачи правительством разрешения на полет.

5.4. Ослабление последствий аварийных ситуаций

Для ослабления последствий возможных аварийных ситуаций следует прилагать все осуществимые усилия.

В рамках процесса обеспечения безопасного использования космических ЯИЭ следует проводить оценку мер по ослаблению последствий аварийных ситуаций, при которых возможен выброс радиоактивного материала в окружающую среду Земли. Следует создать и, в соответствующих случаях, предоставлять необходимые возможности для содействия мероприятиям по ослаблению последствий аварийных ситуаций, включая:

- а) разработку и осуществление планов деятельности в нештатных ситуациях для прерывания последовательности развития аварийной ситуации, чреватой опасностью радиационного облучения;
 - b) определение того, состоялся ли выброс радиоактивного материала;
 - с) описание места и характера выброса радиоактивного материала;
 - d) описание районов, загрязненных радиоактивными материалами;
- е) рекомендацию мер защиты с целью ограничить облучение групп населения в пораженных районах;
- f) предоставление соответствующим правительствам, международным организациям, неправительственным организациям и широкой общественности информации относительно районов, затронутых аварийной ситуацией.

6. Глоссарий терминов

В нижеследующем глоссарии определяются термины, которые используются только применительно к сфере безопасности космических ЯИЭ. Определения общих терминов по ядерной безопасности и радиационной защите, которые используются в Рамках обеспечения безопасного использования, приводятся в Глоссарии МАГАТЭ по вопросам безопасности, издание 2007 года⁴.

Этап вывода из эксплуатации — период времени после истечения эксплуатационного срока космического аппарата.

Правила полета – сборник решений, которые заранее принимаются для сведения к минимуму процесса принятия решений в реальном масштабе времени применительно к штатным и нештатным ситуациям, влияющим на полет.

Запуск – комплекс мер на месте старта, ведущих к выводу космического аппарата на заранее определенную орбиту или траекторию полета.

Этап запуска — период времени, охватывающий предстартовую подготовку в месте старта, старт, набор высоты, работу верхних (или разгонных) ступеней, извлечение полезной нагрузки и другие действия, связанные с выводом космического аппарата на заранее определенную орбиту или траекторию полета.

⁴ Международное агентство по атомной энергии, Глоссарий МАГАТЭ по вопросам безопасности: терминология, используемая в области ядерной безопасности и радиационной защиты, издание 2007 года (Вена, 2007 год).

Ракета-носитель – любой транспортный аппарат, включая верхние (или разгонные) ступени, созданный для вывода полезной нагрузки в космос.

Пусковая система — ракета-носитель, инфраструктура стартового стола, вспомогательные сооружения, оборудование и процедуры, необходимые для выведения полезной нагрузки в космос.

Утверждение полета— выдача правительственным органом разрешения на проведение мероприятий по подготовке к запуску и эксплуатации полезной нагрузки.

Полетное задание — задание в отношении траектории и маневров космического аппарата с учетом целей полета, ракеты-носителя и возможностей космического аппарата и полетных ограничений.

Разрешение на запуск – выдача правительственным органом разрешения на запуск и эксплуатацию полезной нагрузки.

Организация, осуществляющая полет с использованием космического ядерного источника энергии — юридическое лицо, осуществляющее прямой контроль и надзор над полетом с использованием ядерного источника энергии.

Космический ядерный источник энергии – устройство в космической системе, использующее радиоизотопы или ядерный реактор для выработки электроэнергии, обогрева или приведения в движение.

Применение космического ядерного источника энергии – комплексная система (т.е. космический ядерный источник энергии, космический аппарат, пусковая система, полетное задание, правила полета и т.д.), задействованная в осуществлении космического полета с использованием космического ядерного источника энергии.