1. Safety in space, in the context of the theme of the long-term sustainability of outer space activities

1. In 2011, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS), acting within the framework of the existing possibilities of achieving consensus decisions, decided how the work of the Scientific and Technical Subcommittee of the Working Group on the Long-term Sustainability of Outer Space Activities should proceed. An important result was thereby attained: it had proved possible to focus on the many outstanding aspects of the issue of the long-term sustainability of outer space activities and delimit issues chosen for detailed consideration according to their functional attributes. Even though the various States were motivated by aspirations that could not always be reconciled, the adoption by the members of the Committee of a decision to consider a number of different aspects of an extensive theme as a single package was enough in itself to strengthen the perception of the peaceful uses of outer space as a strategic resource belonging to all of humanity and made it possible to identify and consolidate new common interests with a view to raising the level of opportunities for cooperation, both in ensuring safety in space and in applying it to other areas.

2. Nonetheless, for a number of objective reasons, particularly the nature of the theme, it is not possible to foresee all the specific results of the analytical survey approach, which means that the Committee must act pragmatically with the appropriate degree of caution.

3. The whole agenda of space diplomacy essentially relates to the question of space safety and the safety of space activities. However, the context for considering such questions varies from one platform for international negotiations to another,
whether it be COPUOS, the Group of Government Experts on Space Transparency and Confidence-building Measures (which is due to start work in July 2012), the consultations on drafting a code of conduct on space activities or the Conference on Disarmament. In the context of COPUOS, the safety of space activities is bound up primarily with the problems of the pollution of near-Earth space and the tracking of non-operational objects and fragments of space debris.

4. At the same time, the question of raising verifiability and information levels while simultaneously considering and resolving the problems of ensuring the safety and predictability of the space situation should be seen also in the wider political context: the safety of space activities is, after all, inextricably bound up with the predictability of space activities themselves and States’ intentions with regard to the use of space. The two issues are closely connected in the system of coordinates of space policy as it really is.

5. The successful attainment of the object of assuring safety in space and space activities is predicated on the exchange of reliable, accurate and sufficiently complete information in an agreed format, the development of verification codes and the consolidation of mutual understanding concerning policies, legitimate methods and technical procedures that would facilitate the fair and effective implementation of measures to do away with non-operational space objects and fragments of space debris. In the long term, it is important to establish strong and clear prospects for cooperation in this regard. The creation of an institutional basis for international practice in this area, in the form of guiding principles and the corresponding implementation mechanisms, requires the development of specific systemic approaches at both the national and the international level. Collective progress along this path and the adoption of considered and authoritative decisions would be substantially facilitated by ensuring that work on the related issue of ensuring the safety of space activities in the international forums mentioned above is successful.

2. Regulatory frameworks

6. The policies and measures adopted by the Russian Federation with regard to preventing and lowering the level of space pollution and ensuring the safety of space activities at every stage of the life cycle of space equipment are shaped in such a way as to meet fully both the national requirements and technical standards in force and internationally accepted guiding principles and regulations.

7. The Russian Federation has established a legal basis whereby work can be conducted on resolving the problems of space debris. The basic instruments, apart from the Space Activities Act of the Russian Federation of 20 August 1993, as amended by Act No. 331-FZ of 21 November 2011, consist of:

- A guideline document entitled “Basis of the space activities policy of the Russian Federation for the period 2012-2020 and the long-term prospects”, approved by the President of the Russian Federation in 2008, which defines one of the main issues as “ensuring the safety of space activities, introducing technology and construction that minimize the formation of space debris when spaceships and space stations are launched and used”;

2
• The existing system of standards governing the activities to lower or prevent the pollution of space, including:
 - Specialized space industry standard (OST) 134-1023-2000, entitled “Space technology items: General requirements for the mitigation of space debris” (came into force in 2000);
 - Specialized OST standard 134-1031-2003, entitled “Space technology items: General requirements for the protection of space facilities from the mechanical effect of fragments of natural or man-made origin” (came into force in 2003);
 - State standard of the Russian Federation GOST P 25645.167-2005, entitled “Space environment (natural and artificial). Model of the space-time distribution of the flux density of man-made substances in space” (came into force in 2005);
 - State standard of the Russian Federation GOST P 25952-2008, entitled “Space technology items: General requirements for space facilities to mitigate the creation of space debris” (came into force in 2009); the requirements of this standard extend to all new or modernized space complexes of a scientific, social and economic, commercial or military nature and cover every stage of the life cycle of space complexes, in line with the COPUOS Space Debris Mitigation Guidelines.

3. Current situation regarding application, utilization methods, technical standards and methodology

8. Implementation measures taken by the Russian Federation in response to each of the COPUOS Space Debris Mitigation Guidelines are as follows:

• Limit debris released during normal operations

 Measures taken: full elimination of the possibility of structural components, parts and fragments from Fregat, Breeze-M, DM-SLB and stage-3 Soyuz-2 carrier rockets being discarded in space;

 Measures planned: full elimination in satellites under development of the possibility of structural components, parts and fragments being discarded in space.

• Minimize the potential for break-ups during operational phases

 Measures taken: selection of justified design features for the construction of spacecraft and installation of meteorite shields on high-pressure units in order to prevent their rupture and destruction (the Elektro-L and the Breeze-M and Fregat boosters); the use on the Ekspress-AM spacecraft of nickel hydrogen accumulator batteries instead of batteries using silver-cadmium accumulators, which are vulnerable to destruction as a result of explosion caused by the gases that they produce;

 Measures planned: selection of justified design features for the construction of future spacecraft and installation of meteorite shields on high-pressure units in order to prevent their rupture and destruction.
• Limit the probability of accidental collision in orbit

Measures taken: a regular assessment is undertaken of the probability of a collision between the International Space Station and large fragments of space debris, and avoidance manoeuvres are envisaged; since 2007, there has been an agreed exchange of orbital parameters to ensure that the Russian Ekspress-AM 3 and the Japanese MTSAT satellites keep position; since 2012, there has been monitoring of dangerous convergence on the geostationary satellite orbit (GEO) for the Elektro-L and Luch-5A satellites;

Measures planned: practical implementation of measures aimed at preventing accidental collisions between spacecraft of the Russian orbital constellation and other space objects.

• Avoid intentional destruction and other harmful activities

Measures taken: elimination of intentional destruction on all carrier rockets, boosters and spacecraft;

Measures planned: development of current practice.

• Minimize potential for post-mission break-ups resulting from stored energy

Measures taken: depressurization of fuel tanks of boosters following their transfer to a disposal orbit; draining from DM boosters of fuel remnants from the propulsion unit; burning of fuel remnants from the main engine; burning off of fuel remnants from the propulsion unit of the launch system following separation of the space object; discharging of on-board accumulator batteries and stopping of fly wheels, gyroscopes and other mechanical devices; purging of fuel remnants under high pressure; and discharging of chemical power sources on Ekspress-AM satellites;

Measures planned: for future spacecraft, there will be afterburning of the engine propellant following the conclusion of the active mission lifetime, discharging of on-board accumulator batteries, and disconnection of on-board accumulator batteries, stopping of fly wheels, gyroscopes and other mechanical devices, venting of pressure gas ranks and assuring that the temperature regulation pipework is kept hermetically pressurized.

• Limit the long-term presence of spacecraft and launch vehicle orbital stages in the low-Earth orbit (LEO) region after the end of their mission

Measures taken: the controlled re-entry of the orbital space station Mir, which had a mass exceeding 120 tons in 2001; the controlled deorbiting and re-entry of the Progress cargo vehicles (up to 4-5 times in the course of a year); the controlled deorbiting and re-entry of the Ekspress-AM 4 spacecraft in order to prevent an accidental collision and the creation of a greater quantity of fragments of space debris; the deorbiting and re-entry of Fregat boosters following launches to low Earth orbits.

Measures planned: planning for a re-entry manoeuvre for the spacecraft Resurs-DK1, Resurs-P and Maksat-R in a non-navigational area of the Pacific following the completion of the flight mission or, in the absence of fuel supplies sufficient for re-entry, a manoeuvre to transfer satellites to limited
lifetime orbits, the parameters of the orbits being determined by the fuel remnants.

- Limit the long-term interference of spacecraft and launch vehicle orbital stages with the geosynchronous Earth orbit (GEO) region after the end of their mission

Measures taken: successful re-orbiting in 2006 of the damaged geostationary spacecraft Ekspress-AM 11 to the disposal orbit using altitude control and stabilization system engines;

Measures planned: planning for operations to reorbit to the disposal orbit more recently designed geostationary satellites after their mission lifetime.

4. Detection and Warning Automated System of Hazardous Situations in Near-Earth Space

9. To supplement existing means of controlling space available to the Russian Federation, work is continuing under the supervision of the Russian Federal Space Agency (Roscosmos) to create and use, initially on an experimental basis, a detection and warning automated system of hazardous situations in near-Earth space, the operations of which are, among others, to be conducted in the interests of international cooperation.

10. The main issues facing the System are to:

- Monitor space objects presenting a potential risk for manned or unmanned spacecraft;
- Weigh up the development of dangerous situations in near-Earth space, particularly the dangerous convergence of space debris objects with operational spacecraft and the deorbiting of high-risk space objects;
- Oversee the implementation of measures to dispose of carrier rockets, boosters and spacecraft whose stages have been spent in disposal orbits or limited lifetime orbits.

11. The following measures have been implemented to date:

- The basic structure of the System has been created, including the main information analysis centre (central core) and information-gathering segments;
- Joint action has been set up between Roscosmos and the Ministry of Defence of the Russian Federation and the Russian Academy of Sciences on resolving issues of observation, analysis and forecasting of the man-made environment in near-Earth space;
- Organizational and technical procedures are being worked out for joint action by the System with the operators of spacecraft in the Russian orbital network as regards the identification and prevention of dangerous convergences with other orbital objects;
- Special funds are being established for Roscosmos in the interests of providing the required number of experimental optical stations to observe space objects.

12. The System is facilitating the participation of Roscosmos in international test campaigns to track dangerous space objects and restrict their existence in the orbit.
13. In 2011-2012, four avoidance manoeuvres of the International Space Station were carried out jointly with the System. Over 1,500 convergences of space debris fragments with spacecraft of the Russian orbital network were identified. Over the same period, a ballistic and information operation was conducted to track the deorbiting of more than 50 space objects, the timing and area of descent of which were planned.

14. In carrying out these tasks, the System works with the Space Control Centre of the Space Control System of the Ministry of Defence of the Russian Federation and also the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences and the Institute of Solar-Terrestrial Physics of the Siberian branch of the Russian Academy of Sciences. The System is also involved in resolving safety issues relating to the International Space Station.

15. One of the main features of the development of the System in future will be to extend international cooperation with regard to identifying and preventing dangerous situations. Such cooperation will include:

- The development and implementation of organizational and technical procedures for joint action by the System with facilities engaged in resolving similar problems in the United States of America, Europe and other States;
- Extending the range of Russian and foreign users of information provided by the System on dangerous events;
- The development and joint use of additional ways of observing space objects;
- Joint analysis of complex space situations in near-Earth space.

5. **Aspects of the problem of space debris removal**

16. The application of technologies for the removal of fragments of space debris raises, inter alia, legal issues relating to the status of space objects that have ceased to operate, property rights and issues relating to licensing and the obtaining of authorizations.

17. Space operations to remove objects require the establishment of the relevant prerequisites: an international legislative basis and mechanisms for decision-making on a legally valid basis (based on the principles and standards of international law), information-sharing and the duly regulated, transparent and trust-based conduct of removal operations.

Jurisdiction in relation to orbiting objects that have ceased to operate

18. In the context of the discussion of issues relating to space debris removal, the question arises as to whether non-functional space objects, including fragments of space debris, fall within the jurisdiction of States.

19. At present, not all States register every object that appears or is formed in orbit as a result of various events (including launches, technological operations, experiments and break-ups). Most States enter in their national registers and submit to the United Nations information relating only to payloads. That practice is recognized as legally acceptable and in keeping with the objectives of the
Convention on Registration of Objects Launched into Outer Space of 1976. The following thematic areas should therefore be considered:

- The submission of information on all objects formed in orbit as a result of routine operations (the separation of hardware fragments and major structural components of the stages of carrier rockets, upper stages and space objects during the launching and testing of space objects, the conduct of experiments in space, the break-up or use of space objects, etc.). Does the jurisdiction of the State extend to such objects if that State submits such information but does not enter the objects in its national register or in the United Nations Register of Objects Launched into Outer Space? How should the principle of the exercise by a State of jurisdiction and control over a space object be approached if that object ceases to exist in its original form, that is, if it breaks up entirely or in part? What is the legal status of fragments formed as a result of the break-up of a space object? Does continued jurisdiction in relation to such fragments provide a legal basis for liability in the event that such fragments cause damage to a space object that is under the jurisdiction of another State?

- Submission of information in order to analyse possible dangerous situations in orbit and to issue warnings of dangerous approaches. What is the legal basis on which a State under whose jurisdiction a non-functional space object falls might provide other States with information on the approach of that object to functional space objects belonging to those States or information regarding space objects that have ceased to operate and the likelihood of the descent of intact structural components to Earth? How is it possible to ensure that such a procedure is carried out in the event that the State has insufficient or no technical capability to track such objects? Should that State seek the assistance of States that have the necessary capacity, in order to obtain the necessary information? Should it develop relevant tracking technologies (or invest in their development within the framework of international projects) in order to ensure that it fulfils its obligations under international space law?

- Analysis of the legal consequences of collisions. If a non-functional object that is under the jurisdiction of one State collides with a functional space object that is under the jurisdiction of another State, how should it be determined which State is the party at fault? Can actions be brought against a third State that has provided information on the parameters of the orbital movement of the objects that have collided if, on the basis of that information, decisions have been taken regarding the necessity or inadvisability of carrying out collision avoidance manoeuvres?

- Taking of decisions relating to the deorbiting of a non-functional orbiting object. Is there a need, in connection with the examination of the technical aspects of removing non-functional space objects and fragments of space debris from orbit, to analyse ways and means of drawing a functional and legal distinction between space objects as defined in the Convention on Registration of Objects Launched into Outer Space of 1976 and fragments of space debris? Would the distinction of such fragments from space objects as defined in the Convention be a justified and logical step? Would it be necessary to proceed from the understanding that, in the event that a
physically intact space object ceased to exist in orbit, the launching State or
the State of registry, in implementation of the relevant procedures provided
for in the Registration Convention, could ascertain that the space object had
disintegrated into fragments and confirm that it had ceased to exercise
jurisdiction and control over those fragments? What might be the legal basis
for, and consequences of, operations to remove non-functional space objects
if the issue of exercise of jurisdiction in relation to such objects is not
regulated?

Identification of orbiting objects

20. This problem calls for the examination of ways and means to resolve the
following two complex challenges:

(i) The identification of orbital information indicating a correlation between
newly obtained measurements and previously detected objects and the detection of
new, previously unmonitored objects (trajectory identification and detection of new
objects);

(ii) The identification of monitored objects where such identification
indicates a correlation between the monitored object (as a physical body) and the
event that has led to its appearance or formation in orbit, and, consequently, the
determination of the State (or international organization) under whose jurisdiction
the object is most likely to fall (identification of the origin of the object).

21. With regard to the first challenge, a key aspect is the detection in orbit of the
greatest possible number of objects and the definition and continuous refinement of
the parameters of their orbital movement with sufficient precision to make it
possible to correlate, to an acceptable degree of reliability, newly obtained results of
observations with specific individual trajectories. A prerequisite for the achievement
of those objectives is the availability of:

- The necessary technical resources (radio locators; optical stations; equipment
 for passive radiotechnical monitoring) to ensure trajectory measurements of
 sufficiently high precision;

- Sophisticated software systems that perform the necessary mathematical
 procedures and algorithms and make it possible to process hundreds of
 thousands (and in the future, millions) of trajectory measurements per day
 for several tens of thousands (and in the future, hundreds of thousands) of
 objects.

22. As far as the second question is concerned, it is extremely important that there
should be virtually constant global monitoring of the whole of near-Earth space in
order to provide an opportunity for identifying objects as they appear and their
operational correlation with events as they happen (launches, technological
operations, experiments and controlled destructions). In order to ensure that this
question can be resolved more effectively and results be made more accurate, it is
essential to have an additional flow of information from various sources on planned
operations in near-Earth space, such as launches, manoeuvres or disconnection of
technological components and additional useful loads. The identification of objects
that have been tracked in orbit for a lengthy period largely depends on the
completeness of the record of accumulated orbital information, the record of
information on events in near-Earth space and the record of information on the characteristics of space objects.

23. There has currently been not a single attempt to resolve these issues. The opportunities for various Governments to create and add to records of orbital information on the basis of the results of trajectory measurements have been very limited.

24. In relation to operational satellites, it is possible, in the overwhelming majority of cases, to conduct an independent analysis on the basis of data from various sources, including operators and manufacturers; but, where fragments of space debris are concerned, especially fragments from controlled destructions, it is not possible for a State to conduct such an analysis in the absence of its own technical monitoring equipment or a record of information on objects and events in near-Earth space that has been kept updated over many years.

25. The Russian Federation, like the majority of launching and other States, has currently not institutionalized a procedure for the public dissemination of regularly updated orbital information relating to space debris and operational satellites. Such information, which is openly available from several sources, does not cover all objects that are tracked: a considerable amount of information relates to the category of an object and is not suitable for disclosure or is not released for public dissemination on account of the fact that:

- An orbital object, whether operational or non-operational, such as a carrier rocket stage, an apogee or perigee motor unit, a technological fragment, a fragment from a controlled destruction and others, is connected with the launch of spacecraft for military purposes and their subsequent use;
- The physical characteristics of an object (small size, high coefficient of radiotransparency, low surface reflection coefficient in the visible spectrum, for example), the impossibility of observing it on a sufficiently regular basis and, consequently, the periodic “loss” of the object: it is not always possible to establish that a newly discovered object is the same as a previously observed but “lost” object;
- Orbital information may be considered to be in the category of a trade secret.

26. Accordingly, there will be a need to consider ways and means of developing an agreed approach to the identification of orbital objects. This will, incidentally, make it possible to distinguish small satellites from objects of space debris.

6. Joint processing of data on orbital objects obtained from various sources

27. From the point of view of ensuring the safety of space activities, it is important that:

- Orbital data used for making decisions on avoiding a possible collision of an operational satellite with another orbital object are reliable, meet the requisite level of precision and correspond in form and content to specific standards;
- Procedures for obtaining orbital data and the methods for assessing accuracy are agreed between the participants in information exchanges with regard to
the transparency of the models used, the attitude to the assessment of accuracy and so on.

28. There are two comparable systems for monitoring near-Earth space in the world: those of the Russian Federation and the United States of America. A number of States have the technical means, or a range of means, to monitor space.

29. There are currently no unified standards applying to the calculation and presentation of assessments of the accuracy of orbital information. It is, however, precisely the assessments of the accuracy of orbital information that makes a decisive contribution to assessing the degree of risk caused by a dangerous convergence in space. It is impossible to compare such assessments received on the basis of the independent processing of a basic mass of primary (trajectory) information without carrying out a careful additional analysis and exchanging additional information between processing centres.

30. It is possible to envisage a whole range of States and other legal entities joining forces on a multilateral and/or bilateral basis to analyse and exchange specific information. Any of the possible scenarios involves a particular level of technical or political feasibility. Hypothetically, the most feasible idea seems to be the creation of a single monitoring centre working on the basis of obtaining the results of the processing of primary information from various sources in the form of the parameters of the orbital movement of potentially dangerous objects and assessments of the accuracy of such orbital parameters. To provide an institutional basis for international action on producing the best assessments of the parameters of orbital movement, including deciding on the procedure for reporting such assessments when decisions are taken on the need to carry out avoidance manoeuvres or other operations, and also procedures for conducting subsequent analysis of dangerous incidents that have occurred, will require a considerable focusing of minds.