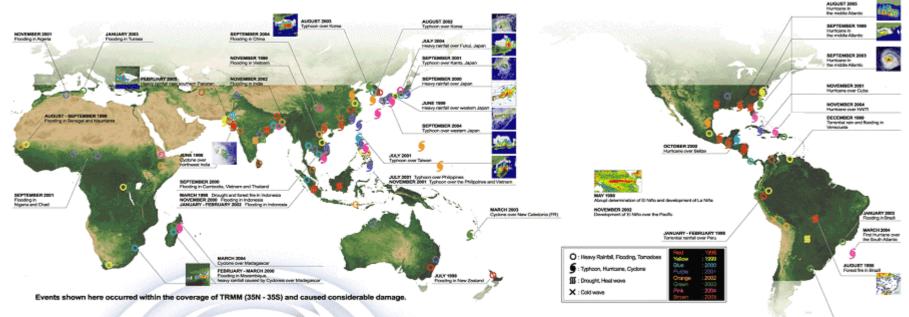
Japanese Programs on Space and Water Applications

Tamotsu IGARASHI

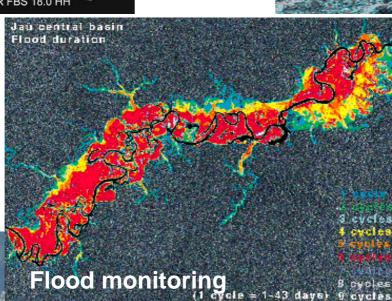

Remote Sensing Technology Center of Japan

June 2006 COPUOS 2006 Vienna International Centre

Water-related hazards/disasters may occur anywhere in the world

Recent disasters, e.g.;

- □ Flash floods in Northern Thailand (May 2006);
- Landslide in Leyte Island, Philippines (Feb. 2006);
- 🗖 and so on ...



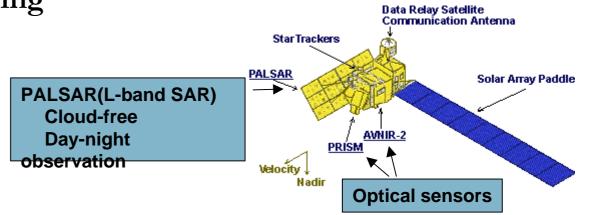
Major meteorological disasters within the coverage of TRMM (35N-35S) during 1998-2005

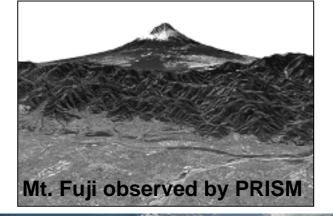
Observation from space plays significant role for disaster management

Flood disaster in Thailand

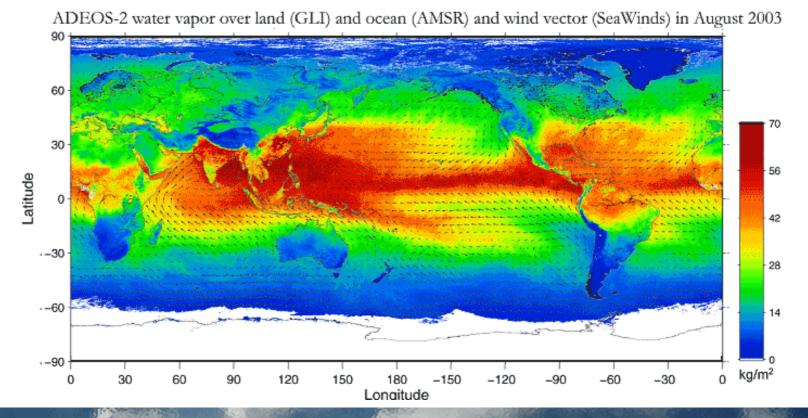
Northern Thailand, observed by ALOS/PALSAR

Landslide disaster in Philippines


Leyte Island, Philippines, observed by ALOS/PALSAR

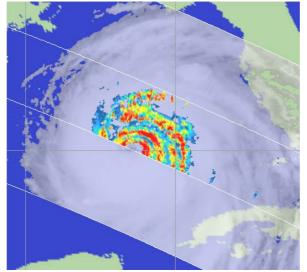

Jau River, Amazon, Brazil, observed by JERS-1/SAR

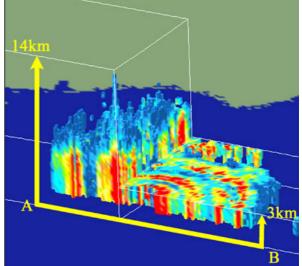
- Launch: 24 January, 2006.
- Objectives:
 - **Cartography**
 - **Regional observation**
 - Disaster monitoring
 - **Resource surveying**



Water Cycle on the Earth

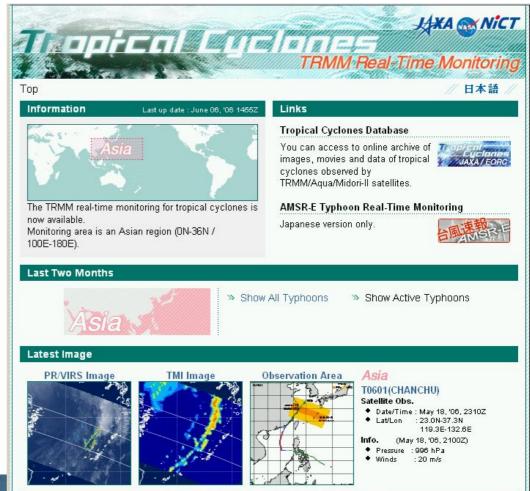
Global water vapor transport observed jointly by AMSR (water vapor over ocean), GLI (water vapor over land), and SeaWinds (ocean wind vector), aboard ADEOS-II satellite.


Tropical Rainfall Measuring Mission (TRMM)


- Japan-U.S. joint mission, flying <u>since</u> <u>Nov. 1997</u>
- World's first space-borne precipitation radar (PR) with microwave radiometer and visible-infrared sensor.

Three-dimensional observation of rainfall by PR.

Hurricane KATRINA approaching South US, observed by TRMM at 0323Z 28 Aug. 2005.

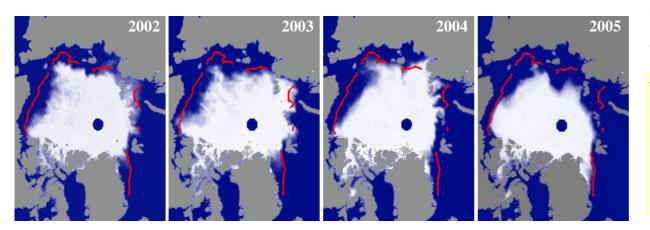


TRMM Tropical Cyclone Real-time Monitoring (North-western Pacific)

Near real-time browse images of tropical cyclones (typhoons) for the North-western Pacific region, observed by TRMM is available.

Database of past tropical cyclones for global region, observed by TRMM, AMSR and AMSR-E, are also available.

http://www.eorc.jaxa.jp/TRMM/



Earth Observation Research Center, Japan Aerospace Exploration Agency JAXA EORC ALL RIGHTS RESERVED. EORC Typhoon Database Secretariat

Advanced Microwave Scanning Radiometer for EOS (AMSR-E)

- Observing various shapes of water over ocean (water vapor, precipitation, cloud water, SST, and sea ice) and land (soil moisture and snow water equivalence).
- Four-years of continuous data records have been archived from 2002.

Sea ice monitoring by AMSR-E.

Yearly changes of monthly sea ice distribution over north polar regions in summer (red lines indicate average extent between 1988 and 2000, provided by NSIDC).

Future mission: Global Precipitation Measurement (GPM)

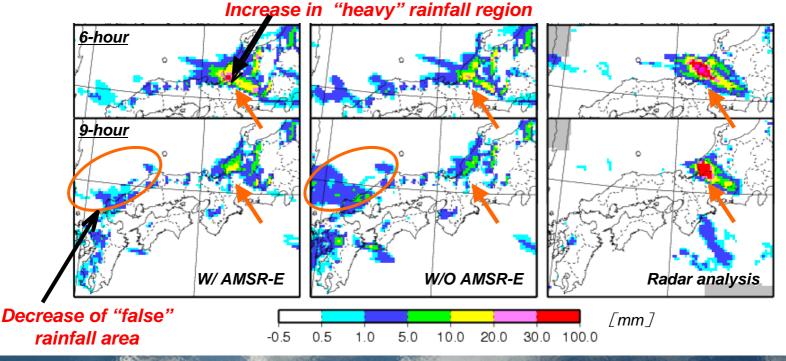
Constellation **Core Satellite Satellites Dual-frequency Precipitation Radar** and microwave radiometer Each carrying microwave radiometers, provided by Observation of rainfall with more international partners accurate and higher resolution More frequent Observation Adjustment of data from constellation satellites International Partners : **JAXA** (Japan) **Dual-frequency Precipitation Radar** NOAA(US), NASA(US), JAXA NASA(US) (Japan), CNES/ISRO(France/India) and others Satellite bus, microwave radiometer

Global Observation every 3 hours

Future mission: Global Change Observation Mission (GCOM)

- Establish and demonstrate global and long-term Earth observation system for understanding climate variability and water-energy cycle.
- 2 satellites (GCOM-W and C) series of 3 generations with 1-year overlap will result in over 13 years homogeneous and steady observation. (W: water and C: climate)
- GCOM-W will focus on variability of global water-energy cycle and extend successful AMSR-E observation to contribute to world water relevant issues.

GCOM-W & -C characteristics (TBD)						
Design	GCOM-W	GCOM-C				
Orbit (TBD)	 Sun-synchronous Altitude: 699.6km Inclination: 98.19deg Asc. local time: 13:30 	 Sun-synchronous Altitude: 798km Inclination: 99.36deg Dsc. local time: 10:30 				
Instruments	AMSR follow-on Microwave imager	SGLI Near-UV ~ TIR imager				
Launch Date	JFY 2010	JFY 2011				
Mission Life	5 years (×3 satellites; total 13 years)					
Launch Vehicle	H-IIA					

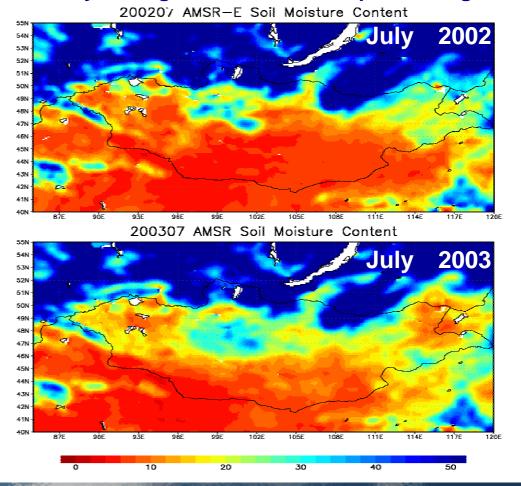


AMSR follow-on of GCOM-W satellites

Expected application (1): Numerical Weather Prediction

Japan Meteorological Agency (JMA) started to use AMSR-E data for the meso-scale numerical weather prediction from November 2004, and for global model from May 2006.

Data assimilation experiment for Fukui heavy rain in July 2004



All results were provided by Numerical Prediction Division, JMA

Expected application (2): Monitoring of soil moisture content

- Soil moisture is important in regional agricultural management and in regional/global climate.
- Because of its fine resolution, AMSR-E currently have the best capability for soil moisture monitoring.
- The wetter land surface condition in 2003 derived from AMSR/AMSR-E is consistent with that year's large amounts of winter snow and summer rain.

Monthly average soil moisture maps of Mongolia

This is a cooperative research project between JAXA, Unv. of Tokyo and Hiroshima Univ. Scientific and societal significance of water-related satellite data

For example, global rain map may apply to ;

- Climate change assessment
 - Monitor variations in rainfall and rain areas associated with climate changes and global warming
 - Improvement in weather forecasts
 - Data assimilation in numerical prediction systems
- Flood prediction
 - Water resource management
 - **River, dam, agricultural water, etc.**
 - Other applications
 - Agriculture, etc.

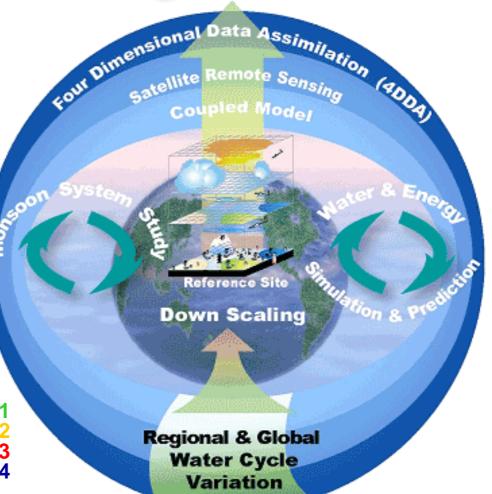
Coordinated Enhanced Observing Period (CEOP) initiated by GEWEX an Element of WCRP

CEOP HP : http://www.ceop.net

CEOP Objectives:

- 1. Water and Energy-Cycle Simulation and Prediction
- 2. Monsoon System Studies

CEOP Strategy:

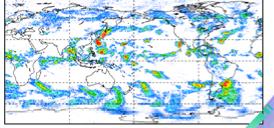

- 1. The first global integrated data sets of the water cycle with spatial consistency and climate variability, through
 - (i) the ground-based observations from the 36 CEOP reference sites
 - (ii) the satellite observations of the entire water cycle
 - (iii) the simulations of numerical models with physical consistency
- 2. Challenges to inter-connection of regional water cycles and Down-scaling applications to water resources

CEOP Schedule:

	2001	2002	2003	2004		
The Preliminary Data period	-1 Julj	30 Sep				EOP-1
The Buildup phase						EOP-2
The First Annual Cycle period		1 Oct	30 Sep			EOP-3
The Second Annual Cycle period			1 Oct	30 Sep	_	EOP-4
Hie Securiu Annual Cycle penc	1			1 Oct	31 Dec	EUP-4

Data Collection:2001-2004 / 2005-2007: Research

Integrated Data Sets



Global Flood Alert System (GFAS)

Raw Data

On-Line

GFAS will receive and utilize real-time 3-hourly global precipitation data obtained from GPM to disseminate flood information to the concerned countries.

Estimation of precipitation probability

Present Precipitation Estimated Precipitation Probability

On-Line

E-mail

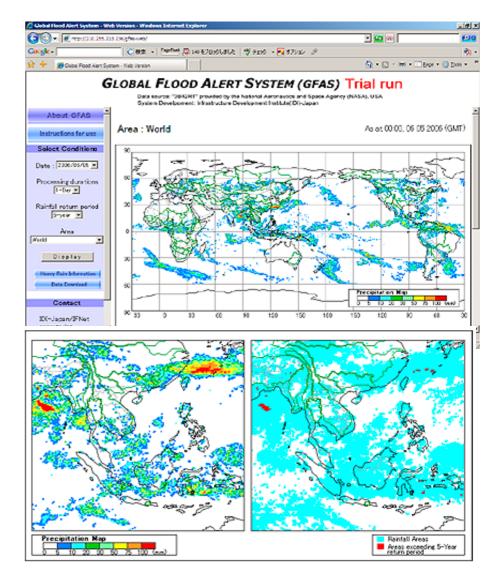
Disaster Prevention Organizations of the concerned countries GPM (Global Precipitation Measurement)

> Precipitation Information around the Upstream

Ground Stations (NASA, JAXA)

Data Processing System (NASA, JAXA) Real-time 3-hourly Precipitation Data

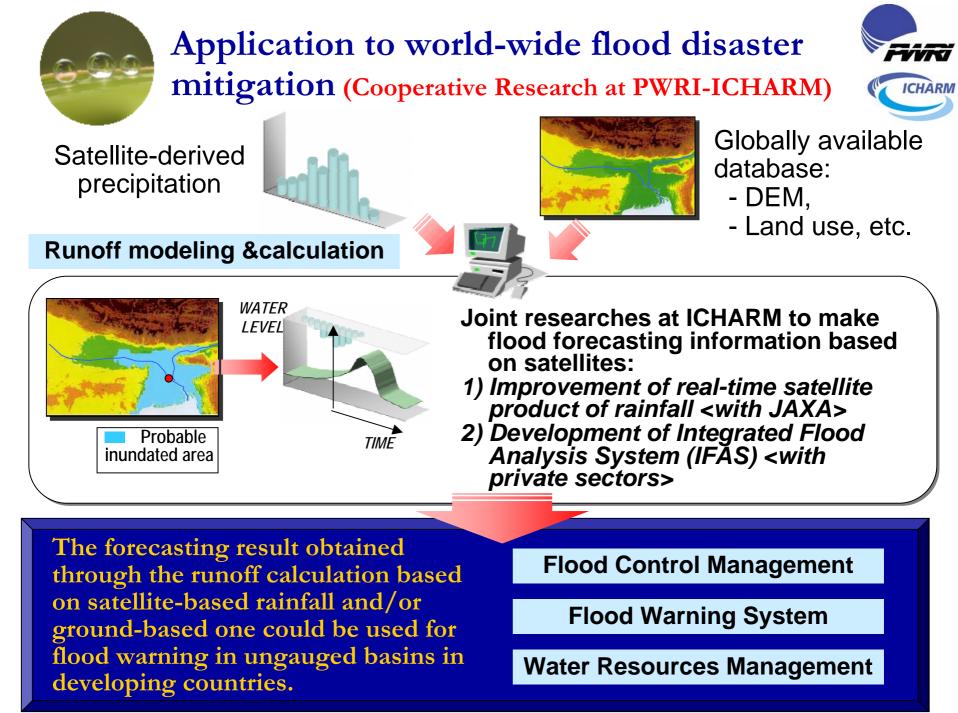
Flood


Alert !

GFAS trial run on IFNet's website

- The internet-based system is being developed by the Infrastructure Development Institute (IDI)-Japan
- The GFAS displays global/regional daily and 3-day rainfall maps, precipitation data in text form, and provides heavy rain information by precipitation probability estimates.
- Currently running on a trial basis at IFNet's website.

http://gfas.internationalfloodnetwork.org/gfas-web/



Outline of International Centre for Water Hazard and Risk Management (ICHARM) under the auspices of UNESCO

- Flood risk analyses in diverse localities in developing countries
- Development of flood warning systems that use satellite observations and other advanced technology
- · Development of flood hazard mapping procedures able to meet various environmental and social conditions
- Development of community water hazards risk aversion systems with advanced flood warning and flood hazard maps as available means
- · Promotion of basic research on hydrological measurement, analysis, and forecast to support ICHARM activities
- Participation in international research programs such as World Water Assessment Programme, International Flood Initiative, Group of Earth Observations and Predictions in Ungaged Basins

Capacity Building Workshop in Asia organized by IGWCO and JAXA with support of AIT

- The Workshop will be held in <u>26-28 Sep. 2006</u>, Bangkok, Thailand, to address the uses and applications of Earth observations for sustainable water management.
- The workshop aims to:
 - exchange information on best practices for applications of Earth observations for water resource management in Asia and other regions.
 - exchange information on available data and tools for applications of Earth observations for water resource management in Asia.
 - consolidate a statement of regional requirements based upon existing needs for Earth observations and capacity building activities for water resource management in Asia.
 - discuss and propose a next step of the regional capacity building projects for applications of Earth observations for water resource management in Asia.

Workshop website: http://www.a-a-r-s.org/ws-eowm/

Conclusion

- The satellite observation is extremely effective to obtain not only water information on the Earth but also disaster damage information.
- Satellite information is also significant for scientific issues, such as extreme rainfall events, sea ice variations in polar regions, and variation of water cycle related to global change.
- End-to-end systems linked data providers and users are explored, such as IFNet/GFAS, ICHARM, etc., toward future operational systems.