Safe und reliable navigation of vessels in ocean, coasts and harbor areas based on GNSS and its augmentation systems

Thoralf Noack

German Aerospace Center
Institute of Communication and Navigation
Nautical Systems
rough sea

Source: Internet
foggy weather

Source: Internet
darkness

Source: Internet
We want to know where we are and we want to know if we can trust the information we get!

We have to find a way to obtain reliable information!
Accuracy vs. Preciseness

Horizontal Positioning Error

Applicable
Tolerable
Unusable

Graphical Translation for the user or operator
GNSS

A **Global Navigation Satellite System** is a system of satellites that provides autonomous geo-spatial positioning with global coverage on earth.

It allow receivers/users to determine their location and time using signals transmitted along a line-of-sight by radio channels from satellites.
The Status Quo in GNSS

GPS (USA)
FOC since 1993

GLONASS (Russia)
FOC since 1996

GALILEO (Europe)
in development

COMPASS (China)
in development

Achievable horizontal positioning accuracy is around 5 up to 10 m
IMO A.915(22) Minimum Requirements on future GNSS

<table>
<thead>
<tr>
<th></th>
<th>Absolute Accuracy</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal (m)</td>
<td>Alert Limit (m)</td>
</tr>
<tr>
<td>Port</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Automatic Docking</td>
<td>0.1</td>
<td>0.25</td>
</tr>
</tbody>
</table>
SBAS (DGNSS)

A Satellite Based Augmentation System is a system that supports wide-area or regional augmentation through the use of additional satellite-broadcast messages.

Ground stations are used to measure the satellite signals and environmental factors which may impact the signals received by the users.
The Status Quo in SBAS (DGNSS)

WAAS (USA)  
operational since 2003

MSAS (Japan)  
operational since 2007

EGNOS (Europe)  
operational since 2009

GAGAN (India), SDCM (Russia),  
SNAS (China),  
in development

SACCSA (South America),  
AFI (Africa), Malaysia  
feasibility studies

Achievable horizontal positioning accuracy is between 0.5 and 3 m (partly with integrity)
GNSS Error Sources

Orbit errors and Clock errors of satellites

Influence of atmospheric effects
- Ionosphere 70...2000 km Altitude
- Troposphere 0 ... 70 km Altitude

Shadowing and Multipath

Interferences of other Radio-Systems

Spooing

Jamming
GBAS (DGNSS)

A **Ground Based Augmentation System** is a system that supports **small-scale** or **local** augmentation through the use of additional **terrestrial-broadcast** messages.

One or more ground stations are used to measure the **satellite signals** and **local environmental factors** which may impact the signals received by the users.
An example for a GBAS (DGNSS)

Achievable horizontal positioning accuracy is in a range of dm up to cm (with integrity)

Source: DLR
GBAS Integrity Monitor for GPS

Source: DLR
GBAS Integrity Monitor for GNSS

Maritime GBAS - GNSS Integrity Message Monitor

<table>
<thead>
<tr>
<th>Application Area</th>
<th>Accuracy Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean / Coastal SAR</td>
<td>0.1 Positioning [m]</td>
</tr>
<tr>
<td>Galileo Sol. Port</td>
<td>0.25 Integrity [m]</td>
</tr>
<tr>
<td>Automatic Docking</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Service Mode</th>
<th>GBAS Status</th>
<th>Positioning Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1 (M1)</td>
<td>healthy</td>
<td></td>
</tr>
<tr>
<td>GPS Single Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS L1 (CA Code)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 2 (M2)</td>
<td>healthy</td>
<td></td>
</tr>
<tr>
<td>GPS Dual Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS L1 &amp; L2 (P Code)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 3 (M3)</td>
<td>healthy</td>
<td></td>
</tr>
<tr>
<td>GALILEO Single Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALILEO E1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 4 (M4)</td>
<td>healthy</td>
<td></td>
</tr>
<tr>
<td>GALILEO Dual Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALILEO E1 &amp; E5a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 5 (M5)</td>
<td>healthy</td>
<td></td>
</tr>
<tr>
<td>Multi GNSS Single Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS L1 (CA Code) + GALILEO E1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 6 (M6)</td>
<td>healthy</td>
<td></td>
</tr>
<tr>
<td>Multi GNSS Dual Frequency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| GPS L1 & L2 (P Code) + GALILEO E1 & E5a | | |}

Source: DLR
Embedding of solutions into an international framework

E-Navigation (E-NAV) Strategy of the IMO

- Framework and working program bringing harmony and interoperability into maritime information systems to enhance safety and operations

- Utilisation of all electronic means to integrate these information into ship navigation systems and vessel management systems

- PNT Working work of IALA E-NAV is authorized to propose standardized solutions to fulfil these requirements
Key issues addressed by E-NAV related to GNSS

Detection of malfunctions in core elements of navigation

Provision of support information (e.g. warnings, alerts) for the mariner or operator

Harmonisation of equipment and processes

Safe, secure and efficient realisation of all processes inside the Global Maritime Traffic System
Is it possible to avoid such pictures?

75 percent of accidents are induced by human errors.

Around 50 percent of accidents have navigational causes.
Thank you for your attention