A Preliminary Suggestion for International Cooperation of Chang'E-4 Probe

Chinese National Space Administration

June, 2015

Contents

An Overview of Chang'E-3 Probe

An Introduction of Chang'E-4 Probe

International Cooperation Intentions

I An Overview of Chang'E-3 Probe Powered **Descending Mission Profile** 100km Polar **Circular Orbit** Lunar **Orbiting** Earth- Moon $100 \text{km} \times 15 \text{km}$ **Transfer** Launch **Lunar Orbit** Injection **Second Mid-course** First Mid-course **Correction Correction Probe& Launch Vehicle Separation**

At 21:11 on 14th Dec. 2014, Chang'E-3 landed on the 44.12° N, 19,51° W northwest region of

Chang'E-3 Probe has accomplished lunar landing, which is the second phase of China Lunar Exploration Program(CLEP) with three phase of "Orbiting, Landing and Return".

- \rightarrow Lunar Orbiting 2004 \sim 2009 (the frist phase)
- > Soft landing and roving 2008 \sim 2014 (the second phase)
- > Sample return $2011 \sim 2020$ (the third phase)

Scientific Objectives:

- lunar surface topography and geology survey
- lunar surface material composition and resource survey
- Earth plasmasphere survey and lunar astronomical observation

Probe	Payload	Mission
Lander	Topography Camera	To obtain landing site optical images to study lunar geological and geomorphic feature
	Landing Camera	During landing process, to obtain the optical images of the landing site to analyze geological and geomorphic feature of the landing area, as well as its geological condition
	Extreme Ultraviolet Camera	During lunar day, to take extreme-UV images of plasmasphere of the earth
	Lunar-based Optical Telescope	During lunar day, to carry out lunar based optical astronomy observation
Rover	Panoramic Camera	To obtain lunar surface images of roving region
	Lunar Radar	To measure the thickness of lunar soil and shallow- layer structure of lunar crust along roving route
	IR Imaging Spectrometer	To study the material composition at roving region
	Particle X-Ray Spectrometer	To analyze and explore the main elements of lunar surface materials of the roving region

Scientific Achievements

Fig.1 Landing Region Picture Taken By Topography Camera

Fig.2 Star Map Observed by Lunar-based Optical Telescope

Fig.3 Pictures Taken by Extreme-UV Camera

Scientific Achievements

Fig.4 Lunar Energy Spectrum Curve Measured by Particle X-Ray Spectrometer

Fig.5-1 Spectrum Curve Firstly Shot by IR Imaging Spectrometer at landing region (Short Wave Infrared)

Fig.5-2 single band gray level image firstly shot by IR Imaging Spectrometer at the Landing region

Fig.6-1 First Channel Antennas
Image Detected by Lunar Radar

Fig.6-2 Second Channel Antennas Image Detected by Lunar Radar

- > Probe (Lander,Rover) + Relay Statellite
- Soft-landing on lunar farside
- Landing and roving exploration
- > Will be launched between 2018 and 2019

The probe:

- > Chang'E-4 probe, lander and rover have the same technical status with the Chang'E -3; but exploration will be redesigned; the payload will be reconfigered; The name of the probe might be changed.
- > Chang'E-4 probe is a backup spacecraft of Chang'E -3 probe. By now, all platform products of the probe have been manufactured, waiting for further AIT.
- > The probe will be launched by a long March 3B rocket from the Xichang Statellite Launch Center(XSLC) which is the same way with the Chang'E-3 between 2018 and 2019.

The relay statellite:

will be first launched into a lunar transfer orbit about the end of 2018 in the whole mission, then starts its earth-to-moon jurnery alone, and will enter and run in a Halo orbit around the Earth-Moon L2 point; the design life is 3 years.
 would provide relay service for the probe and the Earth, and carry out exploration.

Engineering objectives are as follow.

- To realize the first soft landing on the lunar farside and perform exploration in human history.
- To demonstrate technologies of lunar data relay, landing and roving on complicated terrains of the lunar farside, and lunar night power generation;
- To perform further detailed survey on lunar environment in order to lay a foundation for subsequent lunar exploration mission.

Tentative Scientific objectives are as follow.

- To study lunar surface dust features and its formation mechanism;
- > To perform in-situ measurement of lunar surface residual magnetism and study its interaction with solar wind;
- > To study lunar surface temperature and particle radiation environment;
- To perform lunar surface topology and material composition analysis, shallow-layer structure survey and study;
- > To explore and study lunar interior structure of spheres;
- > To perform lunar based VLF astronomical observation and study.

III International Cooperation Intentions

We expects to promote international cooperation on Chinese future lunar exploration activities especially on present Chang'E-4 mission widly, and the Participant could be country, organization, and company.

Several possible ways of cooperation are proposed as followed.

- On mission level.
- > On equipment.
- > On other aspects.

III International Cooperation Intentions

On mission level:

- Participants may respectively launch their probes, and construct communication network on lunar surface, then carry out joint exploration.
- Participants may respectively launch their probes, and carry out coordination landing test on lunar surface, realize highprecision landing, perform experimental verification for lunar base.

III International Cooperation Intentions

- On equipment level: Participants may provide some scientific payloads or other small experimental equipment which could be carried by Chinese lander, rover or satellite.
- On other aspects: Foreign side provides deep space network TT&C support during its visible pass; participants share the data of lunar exploration, and carry out data analysis and scientific research.

Thank you!