Regulatory aspects of small satellite remote operations in radio amateur bands

54th Session of the Legal Subcommittee of COPUOS
Fernando Aguado Agelet
Rafael Moro Aguilar
Contents

- Capacity building through Small Satellites.
- Spanish Cubesat Missions.
 - HUMSAT: International mission under BSTI.
- Small satellite regulatory framework.
- Small satellite remote operation: general regulatory aspects.
- Example of remote operation by SATNET.
- Conclusions.
- **Cubesat standard:**
 - In 1999, CALPOLY and Stanford University developed the specifications.
 - Originally, educational, now also commercial and governmental.
 - Provide hands-on experience to students.
 - Typically, 1-2 years mission life.
 - Low cost (hardware < 50 K€)

- **Number of Cubesats in orbit:**
 - As of 15/03/2015, 330 cubesats have been launched.
 - 136 from Universities.
 - Number of launches has surpassed the most optimistic prediction.
Spanish Cubesat Missions

- **Xatcobeo (Uvigo):**
 - First Spanish University Cubesat (1 Kg).
 - Developed following space quality standards (ECSS).
 - Launched by ESA on 13-02-2012 and re-entered on 31-08-2015.
 - 100% Successful mission.

- **GENSO** (Global Education Network for Satellite Operation) (**ESA & Uvigo**)
 - Worldwide network for satellite Operation.
 - Uvigo selected by ESA as European Operation Node.
 - Uvigo led the software development.
Spanish Cubesat Missions

- **HUMSAT-D (Uvigo)**
 - First satellite of the HUMSAT mission carried out under the Basic Space Technological Initiative of OOSA.
 - It receives, storages and re-transmits information collected from worldwide in-situ sensors.
 - Redundant and parallel reception up to 4 simultaneous sensors.
 - Successfully launched by DNPER on 21-10-2013: 100% mission objectives

- **Optos (INTA):**
 - Technological demonstrator.
 - 3U Cubesat.
 - Launched by DNPER on 21-10-2013.
 - 100% mission objectives.
Spanish Cubesat Missions

- **SERPENS: (Brazilian Space Agency & UVIGO):**
 - Cooperation Brazil & Spain.
 - 3U Cubesat (3.5 Kg).
 - Second HUMSAT satellite.
 - Scheduled launch 3Q2015 from ISS.

- **SATNET (CALPOLY & UVIGO)**
 - Worldwide network for satellite Operation.
 - Open Source software.
 - Network architecture compatible with federal deployments and distributed cloud computing.
Small satellites under international space law

- Cubesats and all other smallsats are **space objects** under the UN Outer Space Treaties.
 - Art. VI OST: State parties are **responsible for all national activities in outer space** > including smallsats
 - Art. VII OST & 1972 Liability Convention: launching States are **liable for any damages** caused by the smallsat while in orbit (no damages caused on earth, as they usually burn up in the atmosphere during reentry).
 - Art. VIII OST & 1974 Registration Convention: 1) The launching State must **register** any object launched into earth orbit or beyond; 2) **the State of registry will retain jurisdiction and control** over the space object.
Small satellites under national space law

- States should implement all these international obligations at the domestic level:
 - By assuming responsibility over smallsats procured by their non-governmental / private entities, and by accepting the role of launching State.
 - By imposing an obligation to obtain a license to launch and operate non-governmental smallsats.
 - By registering non-governmental smallsats, both at national and international level.
 - By establishing an adequate supervision of this kind of space activity.
Additional int’l regulations for small satellites

- Art. IX OST: duty not to interfere with the space activities of other States.
 - Minimize the creation of space debris > the 25 year rule
 - Avoid harmful interference with other radiocommunications

- ITU Regulations > smallsats must comply with the ITU Radio Regulations (RR), and same as all other satellites:
 - Must follow the RR, both for the frequencies (radio-spectrum is a limited natural resource) and for the associated orbits
 - Must follow ITU coordination procedure whenever necessary
 - Coordination of smallsats constellations with pre-existing satellite networks (GEO, etc) is particularly challenging
UN-OOSA Basic Space Technology Initiative

- Goal is **to provide advice on regulatory and technical aspects** (frequency registration, inclusion on the UN Register) with regard to smallsats.

- **ITU-T Resolution 757 (WRC-12):** there are no specific smallsats characteristics relevant from a frequency management perspective. As a consequence, ITU Radio Regulations (Article 9 & 11) remain untouched and in force for small satellite missions.

- ITU 2015 symposium approved the **Prague Declaration** urging the small satellite community to adhere to international regulations and to continue with capacity-building workshops on regulatory and legal aspects.
There are many non-GO small satellites operating in frequency bands not falling under ITU Article 9 (ITU coordination procedure).

University cubesats typically operate in radio-amateur satellite bands:

- Only suitable for non commercial applications.
- Most common frequency bands:
 - VHF: 144-146 MHz (primary service)
 - UHF: 432-438 MHz (secondary service 5.282)
 - S band: 2300-2450 MHz - (secondary service 5.282)

For non RA small satellites, other frequencies are available → same ITU regulation than other NGO satellites
Earth Station – Satellite Radio Amateur

- Any satellite operator shall set up an earth station to ensure that they will be capable of switching off the transmissions from the satellite (25.11).
- The station has to be operated by an operator with a valid amateur license (1.56, 1.57 and 25) and callsign (19).
- Remote earth Stations have to be located inside notified service areas of the satellite.
 - Service area “XVE-visible earth” for a worldwide service area.
 - No extra fee to include & update additional service areas.
Earth Stations Networks

- For LEO orbits: typically 5 or 6 passes of 8-12 minutes of duration over the local Earth Station.
- Thus, 90% time not used in a single satellite mission operated by its own ES.
- Ground Stations Networks:
 - Extend the satellite access time.
 - Select the best moment to operate the satellite based on the housekeeping telemetry.
 - Increase dramatically the mission data budget.
 - But impact on power budget.

Vienna, 21st of April 2015
Earth Stations – Satellite Radio Amateur

- Downlink remote satellite operation
 - Possible to automatically receive passive downlink and retransmit the received data by internet to the control centre.
 - Some national regulations do not allow interconnecting ES to internet.
 - No local operator needed in the remote ES.

- Uplink remote satellite operation
 - Operator shall be present in the remote ES, supervising the transmissions and controlling the PPT TX/RX.
 - Potential problems for an automatic remote operation without the presence of an operator in the federated ES -> Legal Liability!

- NOTIFY SPECIAL EARTH STATIONS UNDER ITU RES-642
SERPENS: Example of remote operation

- 3U Cubesat Satellite.
- International cooperation under UN BSTI program.
- Scheduled launch in 3Q2015 by ISS.
- API submitted by the Brazilian administration.
- Service Areas: Brazil & Spain.
- Remote Operation by SATNET software
- Imminent notification under RES-642
Conclusions

- Cubesats hands-on experience in real satellite missions.
- Increasing number of small satellite missions.
- Smallsats must comply with international space law.
- University satellites frequently use satellite radio amateur bands.
- Earth Station Networks can dramatically increase the mission return.
- ITU regulation framework:
 - Define properly the service areas
 - Downlink automatic remote operation
 - Uplink supervised remote operation.

NOTIFY SPECIAL EARTH STATIONS UNDER ITU RES-642