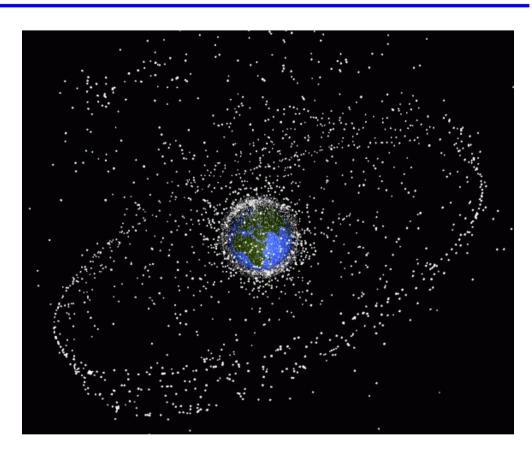
UNCOPUOS S&T SC

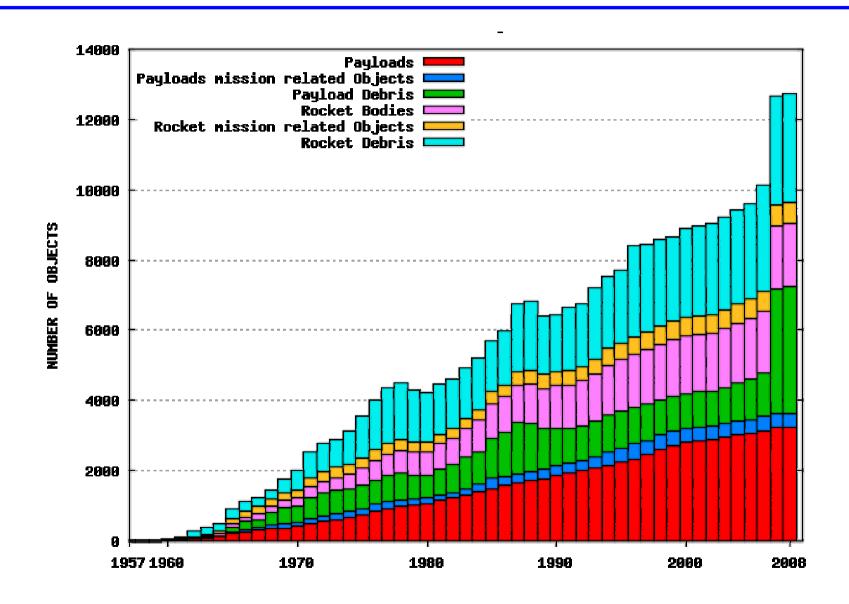
Space Debris Mitigation Activities at ESA

Heiner Klinkrad
ESA Space Debris Office


Overview

- the current, observable space debris environment
- recent fragmentation events
- collision avoidance activities for ESA satellites
- status of objects in the geostationary orbit environment
- o requirements on space debris mitigation for ESA projects
- conclusions

Status of the Orbital Debris Environment


- 4,547 launches and ~200 fragmentations have led to 12,500 US SSN catalog objects by end 2007
- ASAT test on 11-Jan-2007
 ⇒ catalog increase by ~24% (~2400 fragments)
- □ Breeze-M explosion on 19-Feb-2007 ⇒ ~1,100 fragments (23 cataloged)

catalog composition at end 2007: 25% payloads (6% thereof operational), 14% rocket bodies, 8% mission-related objects, and 53% fragments (41% before the ASAT test)

Evolution of the Space Object Population

Collision Avoidance Activities

baseline of ESA's conjunction event assessments:

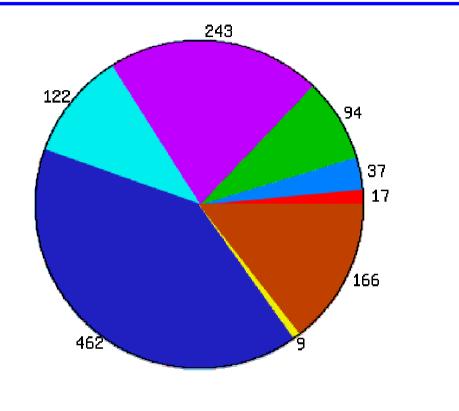
- onjunction analysis and collision avoidance service provided for ERS-2 (2.2 tons) and Envisat (8 tons), both on sun-synchronous, near-polar orbits of 780 km altitude
- conjunction event screening performed with catalog orbit data of the US SSN
- forecasts and notifications are issued automatically, each day, for 7 days ahead
- high-risk events are verified with own orbit determinations from European radar data
- max. accepted collision probability: 1 in 1,000 per event (else
 evasive maneuver).

near-miss of Envisat with Cosmos 1624 and Cosmos 1371

- Ocsmos 1624 and 1371: 750 kg spacecraft on a 785 km, high-inclination orbit
- opotential collision geometry: near head-on approach at 14.8 km/s (53,000 km/h)
- Osmos 1624: near-miss event on Jan. 9, 2008, 19:00 UTC, at 282 m distance
- Osmos 1371: near-miss event on Jan. 13, 2008, 18:58 UTC, at 145 m distance
- based on ESA orbit determinations from German FGAN radar data the assessed collision risk was negligible for both events ⇒ no avoidance maneuvers performed
- Envisat near-miss events in 2007 : 13 at < 500 m, 8 at < 300 m, 3 at < 100 m</p>
- frequent re-visits by some objects: 27 conjunctions of Envisat with Kosmos 783
- 15% of all Envisat near-miss events in 2007 were due to Fengyun 1C fragments

GEO Satellite Retirements in 2007

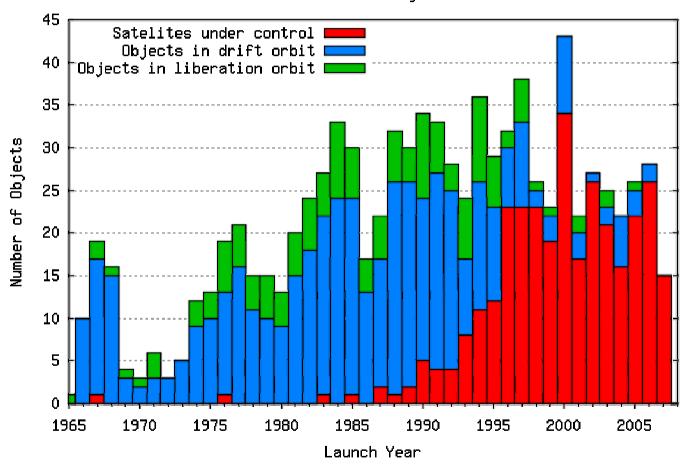
- □ 8 disposals according to the IADC Guideline (re-orbit by >275 km)
 - NATO IV A (91-001A) ⇒ disposal orbit 530 km x 600 km above GEO
 - Meteosat 5 (91-015B, EUMETSAT) ⇒ disposal orbit 490 km x 550 km above GEO
 - Satcom C4 (92-057A, UK) ⇒ disposal orbit 340 km x 370 km above GEO
 - DirecTV 2 (94-047A, USA) ⇒ disposal orbit 410 km x 520 km above GEO
 - GOES 9 (95-025A, USA) ⇒ disposal orbit 410 km x 430 km above GEO
 - Fengyun-2 1R (97-029A, PR China) ⇒ disposal orbit 800 km x 1650 km above GEO
 - O BSAT 1B (98-024B, Japan) ⇒ disposal orbit 295 km x 340 km above GEO
 - Thuraya (00-066A, Emirates) ⇒ disposal orbit 330 km x 400 km above GEO
- ☐ 3 disposals with > 200 years clearance of the protected GEO region
 - → Hot Bird 1 (95-016B, EUTELSAT) ⇒ disposal orbit 258 km x 283 km above GEO
 - JC Sat 3 (95-043A, Japan) ⇒ disposal orbit 265 km x 372 km above GEO
 - N-Star 2 (96-007A, Japan) ⇒ disposal orbit 255 km x 318 km above GEO
- □ 2 satellites left in the GEO protected region (GEO ± 200 km)
 - Gorizont 26 (92-043A, Russia) ⇒ too low disposal orbit 160 km x 420 km above GEO
 - Raduga 30 (93-062A, Russia) ⇒ left in libration around eastern stable longitude


End-of-Life Disposal History of GEO Satellites

	'97	'98	'99	'00	'01	'02	'03	'04	'05	'06	'07	Total
• Left at L ₁	1	7	5	3	5	1	_	2	1	2	1	28
• Left at L ₂	2	3	1	1	1	1	1	1	1	1	_	13
• Left at L ₁ /L ₂	_	_	_	2	_	_	_	_	1	-	1	3
Drift orbit (too low)	6	6	4	2	6	5	7	5	5	7	1	54
Drift orbit (compliant)	_	_	1	_	_	1	2	_	3	1	3	10
• Drift orbit (> 275 km)	6	6	4	3	2	3	6	5	8	9	8	60
Annual Total	15	22	15	11	14	11	16	13	19	19	13	168

the compliance with GEO end-of-life re-orbiting guidelines has improved considerably over the past 10 years

Orbit Control Status of GEO Objects in 2007


```
Libration around 2 points: 17 Controlled: 122
Libration around 105 W: 37 Drift: 462
Libration around 75 E: 94 Indeterminate: 9
Controlled (E-W and N-S): 243 Uncontrolled (no TLEs): 166
```

934 objects were in or near the GEO ring in 2007; of these,13 satellites were retired, and 22 satellites and 2 orbit stages were newly inserted

Orbit Control Status vs. Age of GEO Objects

Classification of geosynchronous objects (Objects with recently updated TLEs) Status: January 2008

ESA Requirements on Space Debris Mitigation

- □ scope of Requirements on Space Debris Mitigation for ESA Projects
 - based on European Code of Conduct on Space Debris Mitigation (issue 1, rev.0, June 28, 2004), as signed by ESA
 - compliant with IADC Guidelines (Nov. 2002) and UN Guidelines (Jan. 10, 2008)
 - to become applicable for all future ESA projects as an ESA Instruction
- tracing of ESA Requirements against UN and IADC Guidelines
 - limit debris released during normal operations (UN→, IADC→, ESA→)
 - minimize the potential of break-ups during operational phase (UN→, IADC→, ESA→)
 - limit the probability or accidental collisions in orbit (UN→, IADC→, ESA → [1])
 - avoid intentional destruction and other harmful activities (UN », IADC», ESA»)
 - minimize the potential for post-mission break-ups resulting from stored energy (UN→, IADC→, ESA→)
 - limit the long-term presence of S/C and L/V orbital stages in LEO after their end of mission (UN→, IADC→, ESA→)
 - Iimit the long-term interference of S/C and L/V orbital stages with GEO after their end of mission (UN→, IADC→, ESA→)
 [1] adopted as a guideline, but not as a requirement, due to lack of guaranteed data

Conclusions

- the frequency of near-miss events in some low earth orbits is high
- debris concentrations at some altitudes have reached critical levels
- debris mitigation measures must consistently be applied in low earth orbits to reach a stable environment
- debris remediation measures may be necessary to safeguard a stable low earth orbit environment in the long-term future
- space debris mitigation measures have been progressively applied for the disposal of GEO spacecraft during the past 10 years [1]

[1] see "Classification of Geosynchronous Objects", issue 10, Feb.2008 (electronic copies can be requested from Ruediger.Jehn@esa.int)

