LARGE MILLIMETER TELESCOPE

VIENNA

FEBRUARY 2009
LARGE MILLIMETER TELESCOPE
Figure 2. Schematic of LMT structure and major performance metrics.
- excelente apoyo logístico (cerca de pueblos grandes/ciudades)
- solo 2 horas de viaje desde el INAOE con 110 km de autopista y 13 km de carretera de acceso al observatorio

sitio GTM
Volcán Sierra Negra
(Tliltépetl) 4581m

Pico de Orizaba
(Citlaltépetl) 5800m
Localización del Gran Telescopio Milimétrico

latitud del GTM ~ +19 degs (como Mauna Kea, Hawai)
A view of the telescope site, with the access road to the right.
Figure 4. (left) Results of site opacity measurements at 225 GHz during 1997-2002. Median and quartile values are shown. Dotted lines show approximate levels of 2mm and 8mm of precipitable water vapor. (right) Transmission curves corresponding to 2mm and 8mm precipitable water vapor cases.
Track welded by Pailería de San Luis Potosí
The structure of the backstructure was aligned on the ground
Lifting the antenna structure on November, 2005
The cladding installation, which is the thermal protection, to cover the 2,183 ton steel structure.
The elevation drives tested and working
Under test, the azimuth motion is done with only 8/16 motors
The working space under the concrete cone
The main reflector is a 50 m diameter parabolic dish with the following parameters:

- Inner diameter: 3.25 m
- Outer diameter: 50 m
- Focal length: 17.5 m
The primary reflector is subdivided in 5 rings, consisting of identical surface segments within each ring. The surface segments are composed of a sub-frame interfacing with the backup structure via a motorised alignment mechanism, a base plate and the reflector panels attached to the base plate via adjustable supports.
The panels

Design and basic geometry
Typical surface segment
The subframes in the laboratory ready for assembly
Adjusters
PANELS

The electroformed nickel panels
Lateral Bars
The first panel in the process of being installed in ring 1
The panels of ring 1 in their way to the telescope
Ring 1 panels in the process of being aligned
Polishing machine for the secondary reflector mold.

The mold accuracy is 9.5 μ rms
The INAOE to construct the secondary reflector.
Metrología

Ajustadores

Subframes

Alineación con máquina de medición tridimensional certificada

Baseplates
The coordinate measuring machine
The secondary reflector has been manufactured with RCFP.
The rear of the secondary reflector with its mounting support structure

The 2.61 m diameter secondary reflector already finished, being packed for the Al deposition.
Dr. Gustavo Chapela, Director General of CONACYT, witnessing a test in May 2006
SEQUOIA: The FCRAO’s 32-pixel focal plane array for the 85-115 GHz frequency band, SEQUOIA, will be one of the initial scientific instruments on the LMT. SEQUOIA has been in regular use on the FCRAO 14m telescope for “on-the-fly” mapping of molecular spectral lines in a variety of celestial sources.

Narrow Band Spectrometer: The FCRAO’s new correlator for the SEQUOIA array, which is also in routine operation on the 14m, will be moved to the LMT as part of the initial science instrumentation. This spectrometer provides two narrowband (50 MHz) IF inputs per SEQUOIA array pixel and will also be used by the 1mm receiver and other future arrays.

Wide Band Spectrometer: A wideband spectrometer is required for the SEQUOIA focal plane array, as well as for any future focal plane arrays developed for the LMT at other frequencies. Construction of a 32 input correlator with 800 MHz of bandwidth is underway at FCRAO.

AZTEC: The Astronomical Thermal Emission Camera (AzTEC) is a large-format bolometer array camera constructed at the University of Massachusetts, in collaboration with the BOLOCAM instrument team at CalTech, JPL, the University of Colorado and the University of Cardiff. The instrument’s detector array is comprised of 144 silicon nitride micromesh bolometers fabricated on a single wafer of silicon, that is nearly identical to that used in the BOLOCAM instrument. While AzTEC is, in concept, a copy of the original BOLOCAM instrument now operating on the Caltech Submillimeter Observatory, many significant modifications have been implemented to improve performance and simplify its operation. AzTEC was completed and commissioned at the JCMT in Spring 2005. It has been included as an available instrument in the JCMT’s call for proposals since that time and it is in regular use at JCMT until the Spring of 2006.
Redshift Receiver: The Redshift Search Receiver is a novel new instrument designed to search for molecular spectral line emission from objects at high redshift. The system is an ultra-wideband receiver capable of analyzing 36 GHz of instantaneous bandwidth to cover nearly the complete 3mm atmospheric window from 75-111 GHz. The receiver “front-end” consists of four sets of low noise amplifiers with noise temperatures between 50-65 K across the full 75-111 GHz band. The complete front end system has been finished and mounted on the 14m telescope for testing during the spring of 2006. A photograph of the completed front end is shown in Figure 10, along with initial test observation of a 6 GHz portion of the spectrum of the galaxy IC342 to demonstrate the potential performance of the system.

SPEED: Where AZTEC is an instrument designed for continuum imaging at a single wavelength, the Spectral Energy Distribution Camera (SPEED) is designed to complement AZTEC by enabling efficient measurements of the complete SED of objects using all the LMT millimeter and submillimeter bands. SPEED will use 16 frequency selective bolometers (FSB) to sample the 2.1, 1.4, 1.1, and 0.86 mm bands simultaneously at four sky positions. This novel bolometer technique will enable improved removal of atmospheric fluctuations, resulting in a factor of two improvement in sensitivity over conventional bolometer arrays. The SPEED instrument is expected to be field-tested at the Heinrich Hertz Telescope in Arizona, where it will remain for scientific applications until commissioning of the LMT begins.

1mm receiver: The 1.3mm atmospheric window is expected to be the “workhorse” frequency band for the LMT. Thus, it is important to instrument the telescope for observations at these wavelengths as soon as possible. We are building a dual-polarization SIS receiver for the 210-275 GHz frequency band as a precursor
Figure 9. (left) AzTEC in receiver cabin of the JCMT during commissioning in 2005; (right) AzTEC map of OMC1 source at 1.1 mm wavelength.
Figure 10. (left) Photograph of Redshift Search Receiver dewer interior; (right) Test observation of 6 GHz portion of the spectrum of IC342, showing millimeter-wave spectral lines of HCN, HCO⁺, and HNC.
Taurus Molecular Clouds
observed with UMass 14m Antenna and SEQUOIA
LA CUBIERTA PROTECTORA FUE TERMINADA EN NOVIEMBRE 2006
Current State of the Art

Clydes Clerk Maxwell Telescope
6 square arcmin
50 hours
1-sigma = 0.6 mJy

Ref: D. Hughes et al
Nature 1998
~5 sources detected
~500 citations to paper

LMT SURVEY OF 25 Square Arcmin

50 Hours with 1-sigma=0.02 mJy
LMT Detects > 600 sources

Time for ALMA to complete the same field ...
- To same flux sensitivity: 100 hours
- To same brightness sensitivity: 10000 hours
Quantitative Comparisons of Other MM-wave Telescopes relative to LMT

Red indicates that LMT is better

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to Point Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line (3mm)</td>
<td>0.6</td>
<td>2.5</td>
<td>1.0</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Continuum (1mm)</td>
<td>-</td>
<td>19</td>
<td>1.0</td>
<td>2.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Sensitivity to Extended Emission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line (3mm)</td>
<td>2.3</td>
<td>3.3</td>
<td>1.0</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Continuum (1mm)</td>
<td>-</td>
<td>25</td>
<td>1.0</td>
<td>8.8</td>
<td>6.6</td>
</tr>
<tr>
<td>Mapping Speed (Point Sources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line (3mm)</td>
<td>15</td>
<td>4.5</td>
<td>1.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Continuum (1mm)</td>
<td>-</td>
<td>1108</td>
<td>1.0</td>
<td>34</td>
<td>2.2</td>
</tr>
<tr>
<td>Mapping Speed (Extended Emission)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line (3mm)</td>
<td>348</td>
<td>7.7</td>
<td>1.0</td>
<td>10</td>
<td>5.8</td>
</tr>
<tr>
<td>Continuum (1mm)</td>
<td>-</td>
<td>1908</td>
<td>1.0</td>
<td>324</td>
<td>182</td>
</tr>
</tbody>
</table>

LMT compares favorably with ALMA and will compete with ALMA as the best place for certain experiments.
• The impact on Earth of an asteroid with a diameter of 140 meters would be equivalent to the explosion of a 500 megaton bomb. This is enough power to destroy a large city or create a 100m tsunami. By 2019, a NASA programme will find around 500,000 previously unknown asteroids, of which a few thousand will have “uncomfortable” levels of probabilities of impacting the Earth in the next 50 years.
To determine whether one of those asteroids will impact Earth, and when, will require accurate knowledge about its composition, shape and orbital characteristics. Radar telescopes are the best tools for this purpose.

Mexico is one of a few countries of the world, which are capable of detecting, tracking and characterizing near-Earth asteroids that constitute an impact danger on our planet.
Mexico’s Large Millimeter Telescope (LMT), a 50-meter diameter single dish telescope, can be converted into the largest radar in the world and used to characterize dangerous asteroids and enable international mitigation actions.

- Possible to track asteroids having a probability of impact with Earth above a threshold established by the international scientific community, in order to determine their orbital parameters and other characteristics.
With this knowledge, it is possible to determine if the asteroid indeed represents a risk to Earth and to decide if mitigation strategies need to be pursued. To date, there are not enough radars on a global level to track the number of asteroids, which are anticipated to be discovered.
ESTADO ACTUAL DEL RADIOTELESCOPIO