IADC Re-Entry Prediction Campaigns

H. Klinkrad, ESA
IADC chair
Presentation Outline

- terms of reference of the Inter-Agency Space Debris Coordination Committee (IADC)
- concept of IADC re-entry prediction campaigns
- example of the EAS re-entry
- summary and conclusions
IADC Terms of Reference

- **purpose:**
 - exchange information on space debris research activities between members, to facilitate opportunities for cooperation in space debris research
 - review progress of cooperative activities
 - identify space debris mitigation options

- **membership:**
 - ASI, BNSC, CNES, CNSA, DLR, ESA, ISRO, JAXA, NASA, NSAU, ROSCOSMOS

- **structure:**
 - members are national or international space agencies that perform space activities and actively contribute to space debris research
 - the work program is governed by a steering group and performed in 4 working groups (measurements, environment & database, protection, mitigation)
 - IADC technical meetings are held annually
 - as part of their terms-of-reference, IADC fosters the exchange of data on potentially hazardous re-entry objects
IADC Data Exchange on Re-Entry Risk Objects

- **history:**
 - the risk potential of re-entries was recognized at the occasion of Cosmos 954 (Jan. 1978), Skylab (July 1979), and Salyut 7 (Feb. 1991)
 - an initial, limited IADC data exchange was realized for the Cosmos 398 re-entry (Dec. 1995); a more formalized data exchange was later implemented for the re-entry of the Chinese FSW-1-5 capsule (March 1996)
 - in 1997 plans were adopted to develop a web-based IADC Re-Entry Events Database to facilitate the exchange of information on a re-entry object, on its orbit, and on its predicted re-entry time and location; this database is hosted by the European Space Operations Centre of ESA; it is operational since 1998

- **re-entry risk object qualification criteria:**
 - the object or parts of it may survive to cause potential significant damage, or
 - the entry event may cause radioactive contamination

- **past IADC re-entry prediction campaigns:**
 - Inspektor (D, 1998), GFZ-1 (D, 1999), Soyuz stage (RU, 2000), Vostok stage (RU, 2002), Cosmos 389 (RU, 2003), Cosmos 2332 (RU, 2005), Coronas F (RU, 2005), Cosmos 1025 (RU, 2007), Delta-2 stage (USA, 2007), EAS (USA, 2008)
Re-Entry Test Object EAS

- Early Ammonia Servicer EAS (1998-067BA, #31928)
- launched on STS-105 on Aug. 10, 2001, and installed on ISS truss P-6
- jettisoned from ISS on July 23, 2007, during an extra-vehicular activity
- mass: 640 kg; dimensions: 2.5 m × 1.2 m × 1.7 m
- orbit at campaign start on Oct. 22, 2008: 216 km × 230 km at 51.64° inclination
Altitude Decay of EAS

![Graph showing mean perigee and apogee altitudes with campaign duration from October 22, 2008, to November 3, 2008, with altitudes of 230 km and 216 km.]
Re-Entry Time Window of EAS

ESA predictions with uncertainty
time windows

re-entry epoch
03-Nov-2008
04:58 UTC

PREDICTED EPOCH OF REENTRY (UTC)

EPOCH OF LAST AVAILABLE ORBIT DATA (UTC)
Re-Entry Ground Track of EAS

“impact” location
35°S, 176°E

“80 km alt.” location
48°S, 151°E
EAS Campaign Summary

<table>
<thead>
<tr>
<th>Agency</th>
<th>All Predictions</th>
<th>Last 48h Predictions</th>
<th>Agency</th>
<th>All Predictions</th>
<th>Last 48h Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>Error Δt (%)</td>
<td>Count</td>
<td>Error Δt (%)</td>
<td></td>
</tr>
<tr>
<td>ASI</td>
<td>24</td>
<td>5.76</td>
<td>11</td>
<td>8.53</td>
<td></td>
</tr>
<tr>
<td>BNSC</td>
<td>9</td>
<td>18.89</td>
<td>5</td>
<td>9.18</td>
<td></td>
</tr>
<tr>
<td>CNES</td>
<td>12</td>
<td>5.96</td>
<td>4</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>CNSA</td>
<td>20</td>
<td>7.35</td>
<td>11</td>
<td>4.85</td>
<td></td>
</tr>
<tr>
<td>DLR</td>
<td>16</td>
<td>9.06</td>
<td>7</td>
<td>6.79</td>
<td></td>
</tr>
<tr>
<td>ESA</td>
<td>20</td>
<td>8.50</td>
<td>12</td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>ISRO</td>
<td>28</td>
<td>7.30</td>
<td>13</td>
<td>8.20</td>
<td></td>
</tr>
<tr>
<td>JAXA</td>
<td>7</td>
<td>4.28</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>7</td>
<td>6.51</td>
<td>4</td>
<td>6.37</td>
<td></td>
</tr>
<tr>
<td>ROSCOSMOS</td>
<td>27</td>
<td>5.54</td>
<td>13</td>
<td>5.30</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>170</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Pass of 80 km altitude interface at 04:51 UTC on Nov. 3, 2008 (SSN information)
- Assessed ground impact at time 04:58 UTC, and location 35°S and 176°E
- IADC re-entry database statistics: 6d13h total log-on time of 10 IADC Members; 170 predictions and 160 orbit determinations were entered
Conclusions

- 10 IADC re-entry prediction test campaigns have been performed since 1998, at a mean rate of 1 per year
- the Web-based IADC Re-Entry Events Database has proven to be a valuable tool for the timely exchange of technical information required to perform reliable re-entry predictions of potentially hazardous space objects
- due to the near real-time availability of orbit data from space surveillance systems or individual sensors of IADC members, the re-entry prediction accuracy is generally better than ± 15% of the remaining orbital lifetime (i.e. generally better than ± 13 min, one orbit prior to re-entry)
- the improved prediction accuracy due to data sharing facilitates more efficient risk control in the case of high-risk re-entry events; however, predictions of the final impact zone remain difficult, mainly due to limitations in the atmosphere models and satellite drag models